The morphological and phenotypic characteristics of microglia at different stages of cultivation and transplantation in the area of spinal cord injury in rats



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The morphological and phenotypic characteristics of microglia were carried out immediately after isolation from the cerebral cortex of newborn rats, after 24 hours and 2 weeks of cultivation in vitro. It was shown that these cells expressed markers typical for microglia such as Iba1, CD68, CD11b/c, CD45 and Nestin throughout the cultivation period. Microglia had an amoeboid shape initially, but after 2 weeks branched forms of microglia appeared as well Freshly isolated microglia transduced with recombinant lentivirus LV-EGFP was transplanted to the site of spinal cord injury in rats. Transplanted cells survived in acute phase of injury for at least 14 days and expressed reporter EGFP

Full Text

Restricted Access

About the authors

M. N Zhuravleva

Kazan (Volga region) Federal University

Y. O Mukhamedshina

Kazan (Volga region) Federal University

Email: yana.k-z-n@mail.ru

S. S Arkhipova

Kazan (Volga region) Federal University

E. R Sanatova

Kazan (Volga region) Federal University

A. A Rizvanov

Kazan (Volga region) Federal University

References

  1. Garden G.A. Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 2002; 40 [II): 240-51.
  2. Mosher K.I., Wyss-Coray Т. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem. Pharmacol. 2014; 88 (IV): 594-604.
  3. Perry V. H., Holmes C. Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 2014; 10: 217-24.
  4. Loane D.J., Byrnes K.R. Role of microglia in neurotrauma. Neurotherapeutics 2010; 7 (IV): 366-77.
  5. Ekdahl C.Т., Kokaia Z., Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009; 158(3): 1021-9.
  6. Redondo-Castro E., Hernandez J., Mahy M. et al. Phagocytic microglial phenotype induced by glibenclamide improves functional recovery but worsens hyperalgesia after spinal cord injury in adult rats. European Journal of Neuroscience 2013; 38: 3786-98.
  7. Hernandez-Ontiveros D.G., Tajiri N., Acosta S. et al. Microglia activation as a biomarker for traumatic brain injury. Front. Neurol. 2013; 4: 30.
  8. Benowitz L.I., Popovich P.G. Inflammation and axon regeneration. Curr. Opin. Neurol. 2011; 24: 577-83.
  9. Batchelor P.E., Porritt M.J., Martinello P. et al. Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond thewound edge. Mol. Cell Neurosci. 2002; 21: 436-53.
  10. Rabchevsky A.G., Streit W.J. Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J. Neurosci. Res. 1997; 47: 34-48.
  11. Ramlackhansingh A.F., Brooks D.J., Greenwood R.J. et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 2011; 70(III): 374-83.
  12. Scheff S.W., Rabchevsky A.G., Fugaccia I. et al. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J. Neurotrauma 2003; 20(2): 179-93.
  13. Hartmann C., Deimling von А. Molecular pathology of oligodendroglial tumors. Recent Results Cancer Res. 2009; 171: 25-49.
  14. Potolicchio I., Carven G. J., Xu X. et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 2005; 175(4): 2237-43
  15. Lee J. K., Tansey M. G. Microglia isolation from adult mouse brain. Methods Mol. Biol. 2013; 1041: 17-23.
  16. Cunningham C. L., Martinez-Cerdeno V., Noctor S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 2013; 33(10): 4216-33.
  17. Bartolini A., Vigliani M.C., Magrassi L. et al. G-CSF administration to adult mice stimulates the proliferation of microglia but does not modify the outcome of ischemic injury. Neurobiol. Dis. 2011; 41(3): 640-9.
  18. Scheff S.W., Rabchevsky A.G., Fugaccia I. et al. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J. Neurotrauma. 2003; 20(2): 179-93.
  19. Мухамедшина Я.О., Шаймарданова Г.Ф., Салафутдинов И.И. и др. Доставка рекомбинантного аденовируса с клонированным геном GDNF в область травмы спинного мозга при помощи клеток крови пуповины человека стимулирует восстановление двигательной функции и поддерживает популяцию глиальных клеток. Клеточная трансплантология и тканевая инженерия 2013; 8(3): 129-32.
  20. Ohsawa K., Imai Y., Kanazawa H. et al. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J. Cell Sci. 2000; 113: 3073-84.
  21. Frei K., Siep C., Groscurth P. et al. Antigen presentation and tumor cytotoxicity by interferon-y-treated microglial cells. Eur. J. Immunol. 1987; 17: 1271-8.
  22. Giulian D., Ingeman J.E. Colony-stimulating factors as promoters of ameboid microglia. J. Neurosci. 1988; 8(12): 4707-17.
  23. Takamori Y., Mori T., Wakabayashi T. et al. Nestin-positive microglia in adult rat cerebral cortex. Brain Res. 2009; 1270: 10-8.
  24. Kaur C., Ling E.A. Study of the transformation of amoeboid microglial cells into microglia labelled with the isolectin Griffonia simplicifolia in postnatal rats. Acta Anat. (Basel). 1991; 142: 118-25.
  25. Pittman Elmore M.R., Najafi A.R., Koike M.A. et al. CSF1 receptor signaling is necessary for microglia viability, which unmasks a cell that rapidly repopulates the microglia-depleted adult brain. Neuron 2014; 82(II): 380-97.
  26. Takahashi K., Naito M. Development, differentiation, and proliferation of macrophages in the rat yolk sac. Tissue Cell. 1993; 25(III): 351-62.
  27. Monier A., Adle-Biassette H., Delezoide A.L. et al. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J. Neuropathol. Exp. Neurol. 2007; 66(V): 372-82.
  28. Ling E.A. Some aspects of amoeboid microglia in the corpus callosum and neighbouring regions of neonatal rats. J. Anat. 1976; 121(I): 29-45.
  29. Beers D.R., Henkel J.S., Xiao Q. et al. Wild-type microglia extend survival in PU. 1 knockout mice with familial amyotrophic lateral sclerosis. PNAS USA 2006; 103(43): 16021-6.
  30. Schelper R.L., Adrian E.K. Monocytes become macrophages; they do not become microglia: a light and electron microscopic autoradiographic study using 125-iododeoxyuridine. Jr. J. Neuropathol. Exp. Neurol. 1986; 45(I):1-19.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies