Etiopathogenesis and principles of myasthenia gravis treatment



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review addresses issues of etiological studies of synaptic defects underlying severe immunological disease of neuromuscular system myasthenia gravis. Current concepts on molecular mechanisms of muscle weakness accompanying this disease are considered, development of new algorithms of myasthenia gravis treatment is discussed

Full Text

Restricted Access

About the authors

A. D Kharlamova

A.E. Arbuzov Institute of Organic and Physical Chemistry; Kazan (Volga region) Federal University

K. A Petrov

A.E. Arbuzov Institute of Organic and Physical Chemistry; Kazan (Volga region) Federal University

Email: kpetrov2005@mail.ru

I. V Zueva

A.E. Arbuzov Institute of Organic and Physical Chemistry; Kazan (Volga region) Federal University

E. E Nikolsky

A.E. Arbuzov Institute of Organic and Physical Chemistry; Kazan (Volga region) Federal University; Kazan State Medical University

References

  1. Fambrough D.M., Drachman D.B., Satyamurti S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science 1973; 182: 293-5
  2. Berrih-Aknin S., Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J. Autoimmun. 2014; 52: 90-100.
  3. Vincent A. Autoimmune disorders of the neuromuscular junction. Neurol. India. 2008; 56: 305-13.
  4. Wendell L.C., Levine J.M. Myasthenic crisis. Neurohospitalist 2011; 1(1): 16-22.
  5. Meriggioli M.N., Sanders D.B. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009; 8: 475-90
  6. Casetta I., Groppo E., De Gennaro R. et al. Myasthenia gravis: a changing pattern of incidence. J. Neurol. 2010; 257: 2015-19.
  7. Berrih S., Morel E., Gaud C. et al. Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology 1984; 34: 66-71
  8. Giraud M., Beaurain G., Yamamoto A.M. et al. Linkage of HLA to myasthenia gravis and genetic heterogeneity depending on anti-titin antibodies. Neurology 2001; 57: 1555-60.
  9. Patrick J., Lindstrom J. Autoimmune response to acetylcholine receptor. Science 1973; 180: 871-2.
  10. Alema S., Cull-Candy S.G., Miledi R. et al. Properties of end-plate channels in rats immunized against acetylcholine receptors. J. Physiol. 1981; 311: 251-66.
  11. Plomp J.J., Morsch M., Phillips W.D. et al. Electrophysiological analysis of neuromuscular synaptic function in myasthenia gravis patients and animal models. Exp. Neurol. 2015; 270: 41-54.
  12. Drachman D.B., Angus C.W., Adams R.N. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N. Engl. J. Med. 1978; 298: 1116-22.
  13. Sheng J.R., Li L.C., Prabhakar B. S. et al. Acetylcholine receptor-alpha subunit expression in myasthenia gravis: a role for the autoantigen in pathogenesis? Muscle & Nerve 2009; 40: 279-86
  14. Conti-Fine B.M., Milani M., Kaminski H.J. Myasthenia gravis: past, present, and future. J. Clin. Invest. 2006; 116: 2843-54.
  15. Nastuk W.L., Strauss A.J., Osserman K.E. Search for a neuromuscular blocking agent in the blood of patients with myasthenia gravis. Am. J. Med. 1959; 26: 394-409.
  16. Simpson J.A. Myasthenia gravis: a new hypothesis. Scot. Med. J. 1960; 5: 419.
  17. Kusner L.L., Kaminski H.J., Soltys J. Effect of complement and its regulation on myasthenia gravis pathogenesis. Expert Rev. Clin. Immunol. 2008; 4: 43-52.
  18. Chamberlain-Banoub J., Neal J.W., Mizuno M. et al. Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in lewis rats. Clin. Exp. Immunol. 2006; 146: 278-86.
  19. Mu L., Sun B., Kong Q. et al. Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology. 2009; 128(Suppl 1): e826-36.
  20. Gomez A. M., Van Den Broeck J., Vrolix K. et al. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 2010; 43(5-6): 353-70.
  21. Soltys J., Gong B., Kaminski H. J., Zhou Y. et al. Extraocular muscle susceptibility to myasthenia gravis: unique immunological environment? Ann. N. Y. Acad. Sci. 2008; 1132: 220-4.
  22. Horton R. M., Manfredi A.A., Conti-Tronconi B. M. The 'embryonic' gamma subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle. Neurology 1993; 43: 983-6.
  23. Kang S.Y., Oh J. H., Song S. K. et al. Both binding and blocking antibodies correlate with disease severity in myasthenia gravis. Neurol. Sci. 2015; 36(7): 1167-71.
  24. Tzartos S., Hochschwender S., Vasquez P. et al. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J. Neuroimmunol. 1987; 15: 185-94.
  25. Tzartos S. J., Kokla A., Walgrave S. L. et al. Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67-76 of the alpha subunit. PNAS USA 1988; 85: 2899-903
  26. Lindstrom J., Luo J., Kuryatov A. Myasthenia gravis and the tops and bottoms of achrs: antigenic structure of the mir and specific immunosuppression of eamg using achr cytoplasmic domains. Ann. N. Y. Acad. Sci. 2008; 1132: 29-41.
  27. Papadouli I., Sakarellos C., Tzartos S. J. High-resolution epitope mapping and fine antigenic characterization of the main immunogenic region of the acetylcholine receptor. Improving the binding activity of synthetic analogues of the region. Eur. J. Biochem. 1993; 211: 227-34
  28. Luo J., Lindstrom J. Myasthenogenicity of the main immunogenic region and endogenous muscle nicotinic acetylcholine receptors. Autoimmunity 2012; 45(3): 245-52.
  29. Baggi F., Annoni A., Ubiali F. et al. Immunization with rat-, but not torpedo-derived 97-116 peptide of the AChR alpha-subunit induces experimental myasthenia gravis in lewis rat. Ann. N. Y. Acad. Sci. 2003; 998: 391-4.
  30. Souroujon M.C., Brenner T., Fuchs S. Development of novel therapies for mg: studies in animal models. Autoimmunity 2010; 43: 446-60
  31. Petrov K.A., Girard E., Nikitashina A.D. et al. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by a7 nicotinic receptors and butyrylcholinesterase. J. Neurosci. 2014; 34(36): 11870-83.
  32. Semenov V.E., Giniyatullin R.Kh., Lushchekina S.V. Macrocyclic derivatives of 6-methyluracil as ligands of the peripheral anionic site of acetylcholinesterase. Med. Chem. Comm. 2014; 5(11): 1729-35.
  33. Farrugia M.E., Robson M.D., Clover L. et al. Mri and clinical studies of facial and bulbar muscle involvement in musk antibody-associated myasthenia gravis. Brain 2006; 129: 1481-92.
  34. Madhavan R., Gong Z.L., Ma J.J. et al. The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction. PLoS One 2009; 4(12): e8478.
  35. Geng L., Zhang H.L., Peng H. B. The formation of acetylcholine receptor clusters visualized with quantum dots. BMC Neurosci. 2009; 10: 80
  36. Cole R.N., Reddel S.W., Gervasio O.L. et al. Anti-musk patient antibodies disrupt the mouse neuromuscular junction. Ann. Neurol. 2008; 63: 782-9
  37. De Baets M.H. Insights in the autoimmunity of myasthenia gravis. Autoimmunity 2010; 43: 341-3.
  38. Suzuki S., Utsugisawa K., Nagane Y., et al. Classification of myasthenia gravis based on autoantibody status. Arch. Neurol. 2007; 64: 1121-4.
  39. Romi F., Aarli J.A., Gilhus N. E. Myasthenia gravis patients with ryanodine receptor antibodies have distinctive clinical features. Eur. J. Neurol. 2007; 14: 617-20.
  40. Wang W.W., Hao H. J., Gao F. Detection of multiple antibodies in myasthenia gravis and its clinical significance. Chin. Med. J. (Engl). 2010; 123: 2555-8
  41. Vrolix K., Niks E.H., Le Panse R. et al. Reduced thymic expression of ErbB receptors without auto-antibodies against synaptic ErbB in myasthenia gravis. J. Neuroimmunol. 2011; 232: 158-65.
  42. Nacu A., Andersen J.B., Lisnic V. et al. Complicating autoimmune diseases in myasthenia gravis: a review. Autoimmunity 2015; 27: 1-7.
  43. Walker M. Treatment of myasthenia gravis with physostigmine. Lancet 1934; 1: 1200-01.
  44. Mehndiratta M. M., Pandey S., Kuntzer T. Acetylcholinesterase inhibitor treatment for myasthenia gravis. Cochrane database Syst. Rev. 2014; 10.
  45. Петров К.А., Харламова А.Д., Никольский Е.Е. Холинэстеразы: взгляд нейрофизиолога. Гены и Клетки 2014; 9(3): 160-7.
  46. Skeie G.O., Apostolski S., Evoli A. et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur. J. Neurol. 2010; 17: 893-902.
  47. Hyun S.R., Sang Y.L., Jin S. et al. Comparison of clinical manifestations between patients with ocular myasthenia gravis and generalized myasthenia gravis. Korean J. Ophthalmol. 2011; 25(1): 1-7.
  48. Meriggioli M.N., Sheng J., Li L. et al. Strategies for treating autoimmunity novel insights from experimental myasthenia gravis. Ann. N. Y. Acad. Sci. 2008; 1132: 276-82.
  49. Gilboa-Geffen A., Lacoste P.P., Soreq L. et al. The thymic theme of acetylcholinesterase splice variants in myasthenia gravis. Blood 2007; 109: 4383-91.
  50. Abramochkin D.V., Petrov K.A., Zobov V.V. et al. Mechanisms of cardiac muscle insensitivity to a novel acetylcholinesterase inhibitor C-547. J. Cardiovasc. Pharmacol. 2009; 53(2): 162-6.
  51. Petrov K.A., Kovyazina I.V., Zobov V.V. et al. Different sensitivity of miniature endplate currents of the rat extensor digitorum longus, soleus and diaphragm muscles to a novel acetylcholinesterase inhibitor C-547. Physiol. Res. 2006; 55(5): 585-9.
  52. Petrov K.A., Kovyazina I.V., Zobov V.V. et al. Different sensitivity of miniature endplate currents in rat external and internal intercostal muscles to the acetylcholinesterase inhibitor C-547 as compared with diaphragm and extensor digitorum longus. Physiol. Res. 2009; 58(1): 149-53.
  53. Petrov K.A., Yagodina L.O., Valeeva G.R. et al. Different sensitivities of rat skeletal muscles and brain to novel anticholinesterase agents, alkylammonium derivatives of 6-methyluracil (ADEMS). Br. J. Pharmacol. 2011; 163(4): 732-44.
  54. Nikitashina A.D., Petrov K.A., Zobov V.V. et al. Specific inhibitory effects of the alkylammonium derivative 6-methyluracil on acetylcholinesterase of smooth and striated muscles in rats. Dokl. Biol. Sci. 2013; 449: 82-4.
  55. Argov Z., McKee D., Agus S. et al. Treatment of human myasthenia gravis with oral antisense suppression of acetylcholinesterase. Neurology 2007; 69(7): 699-700.
  56. Sussman J.D., Argov Z., McKee D. et al. Antisense treatment for myasthenia gravis: experience with monarsen. Ann. N. Y. Acad. Sci. 2008; 1132: 283-90.
  57. Bartfeld D., Fuchs S. Specific immunosuppression of experimental autoimmune myasthenia gravis by denatured acetylcholine receptor. PNAS USA 1978; 75(8): 4006-10.
  58. Ma C.G., Zhang G.X., Xiao B. G. et al. Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor J. Neuroimmunol. 1995; 58(1): 51-60.
  59. Im S.H., Barchan D., Fuchs S. et al. Mechanism of nasal tolerance induced by a rcombinant fragment of acetylcholine receptor for treatment of experimental myasthenia gravis. J. Neuroimmunol. 2000; 111: 161-8.
  60. Kumar V., Kaminski H.J. Treatment of myasthenia gravis. Curr. Neurol. Neurosci. Rep. 2011; 11(1): 89-96.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies