Targeted radionuclide therapy: current status and prospects



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One of the intensively developing approaches to the treatment of oncologic diseases is directed (targeted) radionuclide therapy. Radionuclide therapy avoids the side effects associated with external beam therapy. Furthermore, it is possible to combine the processes instrumental diagnostics and radiotherapy (theranostics), which leads to personalize the treatment regimen for each individual patient. in this review, we discuss the fundamentals of targeted radionuclide therapy, including the characteristics of the radionuclides and biomolecular targeting moieties information on the targeted radionuclide therapy drugs for approved for clinical use is provided. Prospects and limitations of the targeted radionuclide therapy and their implementation in clinical practice are discussed

Full Text

Restricted Access

About the authors

V. A Vodeneev

N.I. Lobachevsky Nizhny Novgorod State University

A. V Zvyagin

N.I. Lobachevsky Nizhny Novgorod State University

N. Yu Shilyagina

N.I. Lobachevsky Nizhny Novgorod State University

D. A Kulikov

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences; M.F. Vladimirsky Moscow Regional Research and Clinical Institute

A. V Kulikov

Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences

S. V Gudkov

N.I. Lobachevsky Nizhny Novgorod State University; Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences; A.M. Prokhorov Institute of General Physics Russian Academy of Sciences

References

  1. Hemmings B.A. Akt Signaling-Linking Membrane Events to Life and Death Decisions. Science 1997; 275: 628-30.
  2. Riese D.J., Gallo R.M., Settleman J. Mutational activation of ErbB family receptor tyrosine kinases: insights into mechanisms of signal transduction and tumorigenesis. BioEssays 2007; 29: 558-65.
  3. Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117-34.
  4. Slamon D.J., Godolphin W., Jones L.A. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989; 244: 707-12.
  5. Perou C.M., Sorlie T., Eisen M. B. et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747-52.
  6. Stephens P., Hunter C., Bignell G. et al. Lung cancer: Intragenic ERBB2 kinase mutations in tumours. Nature 2004; 431: 525-6.
  7. Wilken J.A., Maihle N.J. Primary trastuzumab resistance: new tricks for an old drug. Ann N Y Acad Sci. 2010; 1210: 53-65.
  8. Sierra J.R., Cepero V., Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 2010; 9: 75.
  9. Brand T.M., Iida M., Wheeler D.L. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol. Ther. 2011; 11: 777-92.
  10. Ellsworth R.E., Ellsworth D.L., Patney H.L. et al. Amplification of HER2 is a marker for global genomic instability BMC Cancer 2008; 8: 297
  11. Lacroix M. Targeted Therapies in Cancer NY: Nova Sciences Publishers 2014
  12. Zhukov N.V., Tjulandin S.A. Targeted therapy in the treatment of solid tumors: practice contradicts theory. Biochemistry [Mosc. ) 2008; 73: 605-18.
  13. Деев С.М., Лебеденко Е.Н., Современные технологии создания неприродных антител для клинического применения. Arta Naturae 2009; 1: 32-50
  14. Bronte G., Sortino G., Passiglia F. et al. Monoclonal antibodies for the treatment of non-haematological tumours: update of an expanding scenario. Expert Opin. Biol. Ther. 2015; 15(1): 45-59.
  15. Поляновский О.Л., Лебеденко Е.Н., Деев С.М., ERBB-онкогены - мишени моноклональных антител. Биофизика 2012; 77: 289-311.
  16. Pouget J.P., Lozza C., Deshayes E. et al. Introduction to radiobiology of targeted radionuclide therapy. Frontiers in Medicine 2015; 2: 12.
  17. Golden E.B., Apetoh L. Radiotherapy and immunogenic cell death. Seminars in Radiation Oncology 2015; 25: 11-7.
  18. Ward J.F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation and reparability. Progress in Nuc. Acid Res. and Mol. Biol. 1988; 35: 95-125.
  19. Audia G., Bersillon O., Blachot J., Wapstra A.H. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A 2003; 729: 3-128.
  20. Kassis A.I., Adelstein S.J. Radiobiologic principles in radionuclide therapy. J. Nuc. Med. 2005; 46: 4S-12S.
  21. Barendsen G.W., Beusker T.L., Vergroesen A.J., Budke L. Effects of different radiations on human cells in tissue culture. ii. Biological experiments. Radiation Research. 1960; 13: 841-9.
  22. Qaim S.M. Therapeutic radionuclides and nuclear data. Radiochimica Acta 2001; 89: 297-302.
  23. Kuroda I. Effective use of strontium-89 in osseous metastases. Ann. Nuc. Med. 2012; 26: 197-206.
  24. Kraeber-Bodéré F., Rousseau C., Bodet-Milin C., et al. A pretargeting system for tumor PET imaging and radioimmunotherapy. Frontiers in Pharmacology 2015; 6: 54.
  25. Larson S.M., Carrasquillo J.A., Cheung N.K., Press O.W. Radioimmunotherapy of human tumours. Nature Reviews Cancer 2015; 15: 347-60.
  26. Press O.W., Shan D., Howell-Clark J. et al. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 ra-dioimmunoconjugates by cancer cells. Cancer Res. 1996; 56: 2123-9.
  27. Govindan S.V., Goldenberg D.M. New antibody conjugates in cancer therapy Sci World J 2010; 10: 2070-89
  28. Seidl C. Radioimmunotherapy with a-particle-emitting radionuclides. immunotherapy 2014; 6: 431-58.
  29. Ogawa K., Aoki M. Radiolabeled apoptosis imaging agents for early detection of response to therapy. Sci. World J. 2014; 2014: 1-11.
  30. Shtarkman i.N., Gudkov S.V., Chernikov A.V., Bruskov V.I. Effect of amino acids on X-ray-induced hydrogen peroxide and hydroxyl radical formation in water and 8-oxoguanine in DNA. Biochemistry (Mosc. ) 2008; 73: 470-8.
  31. Gudkov S.V., Karp O.E., Garmash S.A. et al. Generation of reactive oxygen species in water under exposure of visible or infrared irradiation at absorption band of molecular oxygen. Biofizika 2012; 57: 5-13.
  32. Gudkov S.V., Astashev M.E., Bruskov V.I. et al. Self-oscillating water chemiluminescence modes and reactive oxygen species generation induced by laser irradiation; effect of the exclusion zone created by Nafion. Entropy 2014; 16: 6166-85.
  33. Gapeyev A.B., Lukyanova N.A., Gudkov S.V. Hydrogen peroxide induced by modulated electromagnetic radiation protects the cells from DNA damage Cent Eur J Biol 2014; 9: 915-21
  34. Garmash S.A., Smirnova V.S., Karp O.E. et al. Pro-oxidative, genotoxic and cytotoxic properties of uranyl ions J Environ Radioact 2014; 127: 163-70.
  35. Gudkov S.V., Shtarkman i.N., Chernikov A.V. et al. Guanosine and inosine triboxin) eliminate the long-lived protein radicals induced X-ray radiation. Dokl. Biochem. Biophys. 2007; 413: 50-3.
  36. Gudkov S.V., Garmash S.A., Shtarkman I.N. et al. Long-lived protein radicals induced by X-ray irradiation are the source of reactive oxygen species in aqueous medium. Dokl. Biochem. Biophys. 2010; 430: 1-4.
  37. Bruskov V.I., Karp O.E., Garmash S.A. et al. Prolongation of oxidative stress by long-lived reactive protein species induced by X-ray radiation and their genotoxic action. Free Radic. Res. 2012; 46: 1280-90.
  38. Martincorena I., Campbell P.J. Somatic mutation in cancer and normal cells. Science 2015; 349: 1483-9.
  39. Dash A., Knapp F.F., Pillai M.R. Targeted radionuclide therapy - an overview. Current radiopharm. 2013; 6: 152-80.
  40. Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer Nature Reviews Cancer 2012; 12: 278-87.
  41. Weiner G.J. Building better monoclonal antibody-based therapeutics. Nature Reviews Cancer 2015; 15: 361-70.
  42. Papotto P.H., Marengo E.B., Sardinha L.R., Goldberg A.C., Rizzo L.V. immunotherapeutic strategies in autoimmune uveitis. Autoimmun Rev. 2014; 13: 909-16.
  43. Reubi J.C., Mäcke H.R., Krenning E.P. Candidates for Peptide Receptor Radiotherapy Today and in the Future. J. Nuc. Med. 2005; 46: 67S-75S
  44. Shapira S., Fokra A., Arber N., Kraus S. Peptides for diagnosis and treatment of colorectal cancer Current Med Chemistry 2014; 21: 2410-16.
  45. Cole J.T., Holland N.B. Multifunctional nanoparticles for use in theranostic applications. Drug Delivery and Translational Res. 2015; 5: 295-309
  46. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced Drug Delivery Reviews 2015; 91: 3-6.
  47. Anderson P.M., Subbiah V., Rohren E. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: samarium-153-EDTMP and radium-223 Adv Exp Med and Biol 2014; 804: 291-304.
  48. Hofmeister V., Schrama D., Becker J.C. Anti-cancer therapies targeting the tumor stroma. Cancer immunology, immunotherapy 2008; 57: 1-17.
  49. Jabbour E., O’Brien S., Ravandi F., Kantarjian H. Monoclonal antibodies in acute lymphoblastic leukemia. Blood 2015; 125: 4010-6.
  50. Seifert R.P., Bulkeley W. 3rd, Zhang L. et al. A practical approach to diagnose soft tissue myeloid sarcoma preceding or coinciding with acute myeloid leukemia. Ann. Diagnostic Pathology 2014; 18: 253-60
  51. Slovin S. Biomarkers for immunotherapy in genitourinary malignancies. Urologic Oncology: Seminars and Original 2015; doi: 10. 1016/j. urolonc. 2015. 02. 007.
  52. Ronca R., Sozzani S., Presta M., Alessi P. Delivering cytokines at tumor site: The immunocytokine-conjugated anti-EDB-fibronectin antibody case. immunobiology 2009; 214: 800-10.
  53. Garinchesa P., Sakamoto J., Welt S. et al. Organ-specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. int. J. Oncology 1996; 9: 465-71.
  54. Huang C.Y., Pourgholami M.H., Allen B.J. Optimizing radioim-munoconjugate delivery in the treatment of solid tumor Cancer Treatment Reviews 2012; 38: 854-60.
  55. Jurcic J.G. Radioimmunotherapy for hematopoietic cell transplantation. immunotherapy 2013; 5: 383-94.
  56. Tabata R., iwama H., Tabata C. et al. CD5- and CD23-positive splenic diffuse large B-cell lymphoma with very low CD20 expression. J. Clin. Exp. Hematopathol. 2014; 54: 155-61.
  57. Koon H.B., Junghans R.P. Anti-CD30 antibody-based therapy Current Opinion in Oncology 2000; 12: 588-93.
  58. Zhang M., Yao Z., Zhang Z. et al. The anti-CD25 monoclonal antibody 7G7/B6, armed with the alpha-emitter 211At, provides effective radioimmunotherapy for a murine model of leukemia Cancer Res. 2006; 66: 8227-32.
  59. Liersch T., Meller J., Kulle B. et al. Phase ii trial of carcinoem-bryonic antigen radioimmunotherapy with 131i-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results J Clin Oncology 2005; 23: 6763-70
  60. Tagawa S.T., Milowsky M.I., Morris M. et al. Phase ii study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2013; 19: 5182-91.
  61. Raja C., Graham P., Abbas Rizvi S.M. et al. interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biology & Therapy 2007; 6: 846-52.
  62. Allen B.J., Singla A.A., Rizvi S.M. et al. Analysis of patient survival in a Phase i trial of systemic targeted a-therapy for metastatic melanoma. immunotherapy 2011; 3: 1041-50.
  63. Sansovini M., Severi S., Ambrosetti A. et al. Treatment with the radiolabelled somatostatin analog Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology 2013; 97: 347-54.
  64. Forrer F., Waldherr C., Maecke H.R., Mueller-Brand J. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors Anticancer Res 2006; 26: 703-8
  65. Waldherr C., Pless M., Maecke H.R. et al. Tumor response and clinical benefit in neuroendocrine tumors after 7. 4 GBq (90)Y-DOTATOC. J. Nuc. Med. 2002; 43: 610-6.
  66. Sanchez Ruiz A.C., De la Cruz-Merino L., Provencio Pulla M. Role of consolidation with yttrium-90 ibritumomab tiuxetan in patients with advanced-stage follicular lymphoma Ther Adv in Hematol 2014; 5(3): 78-90.
  67. Leonard J.P., Coleman M., Ketas J.C. et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase i/ii clinical trial results. Clin. Cancer Res. 2004; 10: 5327-34.
  68. Beatson R.E., Taylor-Papadimitriou J., Burchell J.M. MUC1 immunotherapy. immunotherapy 2010; 2: 305-27.
  69. Han S., Jin G., Wang L. et al. The role of PAM4 in the management of pancreatic cancer: diagnosis, radioimmunodetection, and radioimmunotherapy. J. immunol. Res. 2014; doi: 10.1155/2014/268479.
  70. Liersch T., Meller J., Kulle B. et al. Phase ii trial of carcinoem-bryonic antigen radioimmunotherapy with 131i-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results J Clin Oncology 2005; 23: 6763-70
  71. Goldsmith S.J. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Seminars in Nuc. Med. 2010; 40: 122-35.
  72. Schillaci O., DeNardo G.L., DeNardo S.J. et al. Effect of antilymphoma antibody, 131i-Lym-1, on peripheral blood lymphocytes in patients with non-Hodgkin’s lymphoma Cancer Biother Radiopharm 2007; 22: 521-30.
  73. Dechant M., Bruenke J., Valerius T. HLA class ii antibodies in the treatment of hematologic malignancies Seminars in Nuc Med 2003; 30: 465-75
  74. Hdeib A., Sloan A. Targeted radioimmunotherapy: the role of 131i-chTNT-1/B mAb (Cotara) for treatment of high-grade gliomas. Future Oncology 2012; 8: 659-69.
  75. Fujiki M., Aucejo F., Kim R. Adjuvant treatment of hepatocellular carcinoma after orthotopic liver transplantation: do we really need this? Clin. Transpl. 2013; 27: 169-77.
  76. Erba P.A., Sollini M., Orciuolo E. et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies J. Nuc. Med. 2012; 53: 922-7.
  77. Gudkov S.V., Popova N.R., Bruskov V.i. Radioprotectors: History, Trends and Prospects. Biofizika 2015; 60: 801-11.
  78. Gudkov S.V., Shtarkman I.N., Smirnova V.S. et al. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice Rad Res 2006; 165: 538-45
  79. Gudkov S.V., Gudkova O.Y., Chernikov A.V., Bruskov V.I. Protection of mice against X-ray injuries by the post-irradiation administration of guanosine and inosine. int. J. Rad. Biol. 2009; 85: 116-25.
  80. Asadullina N.R., Usacheva A.M., Gudkov S.V. Protection of mice against X-ray injuries by the post-irradiation administration of inosine-5’-monophosphate. J. Rad. Res. 2012; 53: 211-6.
  81. Asadullina N.R., Usacheva A.M., Smirnova V.S. et al. Antioxidative and radiation modulating properties of guanosine-5’-monophosphate. Nucleosides, Nucleotides & Nucleic Acids 2010; 29: 786-99.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies