Peripheric disfunction as one of the mechanisms of pathogenesis of neurodegenerative disesases



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, etc. affect 20-25% of elderly population, making this one of the main problems of modern society. Data accumulating during recent years certify that neurodegenerative diseases are related to disorders of not only structures on central nervous system, but of peripheral tissues and organs as well. In particular, dysfunction of peripheral excitable structures of neuromuscular and cardiovascular systems was established. These disturbances can play significant role in pathogenesis of neurodegenerative diseases, contributing to development of pathological processes underlying disability and death of patients (skeletal muscle atrophy and paralysis, myocardium infarction, etc.). Pathology of neuromuscular and cardiovascular systems in neurodegenerative diseases is not just “reflection” of degenerative changes in central nervous system, but particular, virtually unexplored aspect of pathogenesis of these maladies Peripheral dysfunctions in neurodegenerative diseases can be primary or amplifying degenerative processes in central nervous system, which further increases their importance in the development of the disease . In this paper, we conduct a detailed review of available literature and our own data on the dysfunction of the peripheral excitable structures in neurodegenerative diseases, and the role of these disorders in pathogenesis and clinical course of these pathologies

Full Text

Restricted Access

About the authors

M. A Mukhamedyarov

Kazan State Medical University

Email: maratm80@list.ru

A. V Martinov

Kazan State Medical University

E. O Petukhova

Kazan State Medical University

P. N Grigoryev

A.N. Tupolev Kazan National Research Technical University

R. A Eshpay

A.N. Tupolev Kazan National Research Technical University

A. A Rizvanov

Kazan (Volga region) Federal University

A. L Zefirov

Kazan State Medical University

References

  1. Угрюмов М.В. Новые представления о патогенезе, диагностике и лечении нейродегенеративных заболеваний. Вестник Российской академии медицинских наук 2010; 8: 6-19.
  2. Мухамедьяров М.А., Зефиров А.Л. Влияние β-амилоидного пептида на функции возбудимых тканей: физиологические и патологические аспекты. Успехи физиологических наук 2013; 44: 55-71.
  3. Crouch P.J., Harding S.M., White A.R. et al. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease. Int. J. Biochem. Cell Biol. 2008; 40: 181-98.
  4. Querfurth H.W., LaFerla F.M. Alzheimer's disease. N. Engl. J. Med. 2010; 362: 329-44.
  5. Selkoe D.J., Podlisny M.B., Joachim C.L. et al. Betaamyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. PNAS USA 1988; 85: 7341-45.
  6. Mehta P.D., Pirttila T., Mehta S.P. et al. Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Arch. Neurol. 2000; 57: 100-5.
  7. Joachim C.L., Mori H., Selkoe D.J. Amyloid beta-protein deposition in tissues other than brain in Alzheimer's disease. Nature 1989; 341: 226-30.
  8. Soininen H., Syrjanen S., Heinonen O. et al. Amyloid beta-protein deposition in skin of patients with dementia. Lancet 1992; 339: 245.
  9. Rosendorff C., Beeri M.S., Silverman J.M. Cardiovascular risk factors for Alzheimer's disease. Am. J. Geriatr. Cardiol. 2007; 16: 143-9
  10. Wirths O., Bayer T.A. Motor impairment in Alzheimer's disease and transgenic Alzheimer's disease mouse models. Genes Brain Behav. 2008; 7: 1-5.
  11. Goldman W.P., Baty J.D., Buckles V.D. et al. Motor dysfunction in mildly demented AD individuals without extrapyramidal signs. Neurology 1999; 53: 956-62.
  12. Poehlman E.T., Dvorak R.V. Energy expenditure, energy intake, and weight loss in Alzheimer disease. Am. J. Clin. Nutr. 2000; 71: 650S-5S
  13. Kitazawa M., Green К.N., Caccamo A. et al. Genetically augmenting Abeta42 levels in skeletal muscle exacerbates inclusion body myositis-like pathology and motor deficits in transgenic mice. Am. J. Pathol. 2006; 168: 1986-97.
  14. Mukhamedyarov M.A., Grishin S.N., Yusupova E.R. et al. Alzheimer's beta-amyloid-induced depolarization of skeletal muscle fibers: implications for motor dysfunctions in dementia. Cell Physiol. Biochem. 2009; 23: 109-14.
  15. Mukhamedyarov M.A., Teplov A.Y., Grishin S. N. et al. Extraneuronal toxicity of Alzheimer's beta-amyloid peptide: comparative study on vertebrate skeletal muscles. Muscle and Nerve 2011; 43: 872-7.
  16. Мухамедьяров М.А., Волков Е.М., Леушина А.В. и др. Ионные и молекулярные механизмы деполяризации скелетных мышечных волокон мыши под действием ß-амилоидного пептида. Российский физиологический журнал им. И. М. Сеченова 2011; 97: 795-803
  17. Caccamo A., Oddo S., Sugarman M.C. et al. Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol. Aging. 2005; 26: 645-54.
  18. de Toledo Ferraz Alves T.C., Ferreira L.К., Wajngarten M. et al. Cardiac disorders as risk factors for Alzheimer's disease. J. Alzheimers Dis. 2010; 20: 749-63.
  19. Dolan H., Crain B., Troncoso J. et al. Atherosclerosis, dementia, and Alzheimer disease in the Baltimore Longitudinal Study of Aging cohort. Ann. Neurol. 2010; 68: 231-40.
  20. Skoog I., Lernfelt B., Landahl S. et al. 15-year longitudinal study of blood pressure and dementia. Lancet 1996; 347: 1141-5.
  21. Palotas A., Reis H.J., Bogats G. et al. Coronary artery bypass surgery provokes Alzheimer's disease-like changes in the cerebrospinal fluid. J. Alzheimers Dis. 2010; 21: 1153-64.
  22. Reis H.J., Wang L., Verano-Braga T. et al. Evaluation of post-surgical cognitive function and protein fingerprints in the cerebrospinal fluid utilizing surface-enhanced laser desorption/ionization time-of-flight mass-spectrometry tSELDI-TOF MS) after coronary artery bypass grafting: review of proteomic analytic tools and introducing a new syndrom. Curr. Med. Chem. 2011; 18: 1019-37.
  23. Love S., Miners S., Palmer J. et al. Insights into the pathogenesis and pathogenicity of cerebral amyloid angiopathy. Frontiers in Bioscience 2009; 14: 4778-92.
  24. Van Nostrand W.E., Melchor J.P., Ruffini L. Pathologic amyloid beta-protein cell surface fibril assembly on cultured human cerebrovascular smooth muscle cell. J. Neurochem. 1998; 70: 216-23.
  25. Tian J., Shi J., Mann D.M. Cerebral amyloid angiopathy and dementia. Panminerva Med. 2004; 46: 253-64.
  26. Paris D., Patel N., DelleDonne A. et al. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci. Lett. 2004; 366: 80-5
  27. Zamolodchikov D., Strickland S. Abeta delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin. Blood 2012; 119: 3342-51.
  28. Turdi S., Guo R., Huff A. F. et al. Cardiomyocyte contractile dysfunction in the APPswe/PS1dE9 mouse model of Alzheimer's disease. PLoS One 2009; 4: e6033.
  29. Carnevale D., Mascio G., D'Andrea I. et al. Hypertension induces brain beta-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension 2012; 60: 188-97.
  30. Garden G.A., La Spada A. R. Intercellular (mis)communication in neurodegenerative disease. Neuron 2012; 73: 886-901.
  31. Kamenetz F., Tomita T., Hsieh H. et al. APP processing and synaptic function. Neuron 2003; 37: 925-37.
  32. Dupuis L., Loeffler J.P. Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. Curr. Opin. Pharmacol. 2009; 9: 341-6.
  33. Selkoe D. J. Alzheimer's disease is a synaptic failure. Science 2002; 298: 789-91.
  34. Mukhamedyarov M.A., Volkov E.M., Khaliullina D.F. et al. Impaired electro-genesis in skeletal muscle fibers of transgenic Alzheimer mice. Neurochem Int. 2014; 64: 24-8.
  35. Rozas J.L., Gomez-Sanchez L., Tomas-Zapico C. et al. Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease. J. Neurosci. 2011; 31: 1106-13.
  36. Bunch T.J., Weiss J.P., Crandall B.G. et al. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer's dementia. Heart Rhythm. 2010; 7: 433-7.
  37. Jefferson A.L., Himali J.J., Beiser A.S. et al. Cardiac index is associated with brain aging: the Framingham Heart Study. Circulation 2010; 122: 690-7.
  38. de la Torre J.C. Vascular risk factor detection and control may prevent Alzheimer's disease. Ageing Res. Rev. 2010; 9: 218-25.
  39. Scheibel A.B., Duong T.H., Jacobs R. Alzheimer's disease as a capillary dementia. Ann. Med. 1989; 21: 103-7.
  40. Gdynia H.J., Kurt A., Endruhn S. et al. Cardiomyopathy in motor neuron diseases. J. Neurol. Neurosurg Psychiatry 2006; 77: 671-3
  41. Asai H., Hirano M., Udaka F. et al. Sympathetic disturbances increase risk of sudden cardiac arrest in sporadic ALS. J. Neurol. Sci. 2007; 254: 78-83.
  42. Druschky A., Spitzer A., Platsch G. et al. Cardiac sympathetic denervation in early stages of amyotrophic lateral sclerosis demonstrated by 123I-MIBG-SPECT. Acta Neurol. Scand. 1999; 99: 308-14
  43. Murata Y., Harada T., Ishizaki F. et al. An abnormal relationship between blood pressure and pulse rate in amyotrophic lateral sclerosis. Acta Neurol. Scand. 1997; 96: 118-22.
  44. Chida K., Sakamaki S., Takasu T. Alteration in autonomic function and cardiovascular regulation in amyotrophic lateral sclerosis. J. Neurol. 1989; 236: 127-30.
  45. Spataro R., Lo Re M., Piccoli T. et al. Causes and place of death in Italian patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 2010; 122: 217-23.
  46. Corcia P., Pradat P.F., Salachas F. et al. Causes of death in a post-mortem series of ALS patients. Amyotroph Lateral Scler. 2008; 9: 59-62
  47. Gil J., Funalot B., Verschueren A. et al. Causes of death amongst French patients with amyotrophic lateral sclerosis: a prospective study. Eur. J. Neurol. 2008; 15: 1245-51.
  48. Kieburtz K., MacDonald M., Shih C. et al. Trinucleotide repeat length and progression of illness in Huntington's disease. J. Med. Genet. 1994; 31: 872-4.
  49. Kehoe P., Krawczak M., Harper P. S. et al. Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J. Med. Genet. 1999; 36: 108-11.
  50. Mihm M.J., Amann D.M., Schanbacher B.L. et al. Cardiac dysfunction in the R6/2 mouse model of Huntington's disease. Neurobiol. Dis. 2007; 25: 297-308.
  51. Sassone J., Colciago C., Cislaghi G. et al. Huntington's disease: the current state of research with peripheral tissues. Exp. Neurol. 2009; 219: 385-97.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies