Technologies of cellular antitumor immune response induction in vitro



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Dendritic cells are “professional” antigen-presenting cells and the most potent stimulators of various immune responses of the organism, including antitumor. Modern studies have shown that an effective antitumor immune response doesn't occur in patients with malignant tumors. This is largely due to a decrease in functional activity of dendritic cells in cancer patients through irregularities in the maturation process to a functionally active form and in the antigen presentation process to naive T lymphocytes This review describes the main stages in technology of cellular antitumor immune response induction in vitro, aimed at resolution of the problems blocking the full functioning of dendritic cells, and additional stimulation of antitumor immune response, as well as prospects for the technology development

Full Text

Restricted Access

About the authors

S. V Sennikov

Research Institute of Fundamental and Clinical Immunology

Email: sennikov_sv@mail.ru

E. V Kulikova

Research Institute of Fundamental and Clinical Immunology

I. A Obleukhova

Research Institute of Fundamental and Clinical Immunology

J. A Shevchenko

Research Institute of Fundamental and Clinical Immunology

References

  1. Москалева Е.Ю., Северин С.Е. Перспективы создания противоопухолевых вакцин с использованием дендритных клеток человека. Иммунология 2002; 1: 8-15.
  2. Evans C., Dalgleish A. G., Kumar D. Review article: immune suppression and colorectal cancer. Aliment. Pharmacol. Ther. 2006; 24(8): 1163-77.
  3. Данилова А.Б., Данилов А.О., Фахрутдинова О.Л. и соавт. Лабораторная оценка содержания TGF1, интерлейкина-10, VGEF in vitro и in vivo у больных солидными опухолями. Вопросы онкологии 2011; 57(6): 759-66.
  4. Nakayama H., Kitayama J., Muto T. et al. Characterization of intracellular cytokine profile of CD4( + ) T cells in peripheral blood and tumor-draining lymph nodes of patients with gastrointestinal cancer. Jpn. J. Clin. Oncol. 2000; 30(7): 301-5.
  5. Fujii S., Liu K., Smith C. et al. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 2004; 199(12): 1607-18.
  6. Heath W.R., Belz G.T., Behrens G.M.N. et al. Crosspresentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 2004; 199: 9-26.
  7. Nersting J., Svenson M., Andersen V. et al. Maturation of human dendritic cells by monocyte-conditioned medium is dependent upon trace amounts of lipopolysaccharide inducing tumour necrosis factor alpha. Immunol. Lett. 2003; 89(1): 59-65.
  8. Avigan D., Vasir B., Gong J. et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin. Cancer Res. 2004; 10(14): 4699-708.
  9. Almand B., Clark J. I., Nikitina E. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 2001; 166(1): 678-89.
  10. Almand B., Resser J.R., Lindman B. et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res. 2000; 6(5): 1755-66.
  11. Schadendorf D., Ugurel S., Schuler-Thurner B. et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann. Oncol. 2006; 17(4): 563-70.
  12. Banerjee D.K., Dhodapkar M.V., Matayeva E. et al. Expansion of FOXP3 high regulatory, T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 2006; 108(8): 2655-61.
  13. Sporri R., Reis e Sousa C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 2005; 6(2): 163-70.
  14. Mailliard R.B., Wankowicz-Kalinska A., Cai Q. et al. Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 2004; 64(17): 5934-7.
  15. Шевченко Ю.А., Хантакова Ю.Н., Курилин В.В. и соавт. Стимуляция цитотоксического иммунного ответа в культуре мононуклеарных клеток у больных раком молочной железы дендритными клетками, нагруженными антигенами опухолевых лизатов Иммунология 2013; 34(6): 327-30.
  16. Obleukhova I.A., Kurilin V.V., Goncharov M.A. et al. Effect of mature dendritic cells primed with autologous tumor antigens from patients with epithelial ovarian cancer on stimulation of the cytotoxic immune response in culture of mononuclear cells. Bull. Exp. Biol. Med. 2013; 156(1): 161-4.
  17. Dauer M., Obermaier B., Herten J. et al. Mature dendritic cells derived from human monocytes within48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J. Immunol. 2003; 170(8): 4069-76.
  18. Jarnjak-Jankovic S., Hammerstad H., Sæb0e-Larssen S. et al. A full scale comparative study of methods for generation of functional dendritic cells for use as cancer vaccines. BMC Cancer 2007; 7: 119.
  19. Czerniecki B.J., Koski G.K., Koldovsky U. et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 2007; 67(4): 1842-52.
  20. Chiang C.L., Hagemann A.R., Leskowitz R. et al. Day-4 myeloid dendritic cells pulsed with whole tumor lysate are highly immunogenic and elicit potent anti-tumor responses. PLoS One 2011; 6(12): e28732
  21. Shen L., Evel-Kabler K., Strube R. et al. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific antitumor immunity. Nat. Biotechnol. 2004; 22(12): 1546-53.
  22. Cohen N., Mouly E., Hamdi H. et al. GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood 2006; 107(5): 2037-44.
  23. Gilboa E. DC-based cancer vaccines. J. Clin. Invest. 2007; 117(5): 1195-203.
  24. Akiyama Y., Maruyama K., Nara N. et al. Cytotoxic T cell induction against human malignant melanoma cells using HLA-A24-restricted melanoma peptide cocktail. Anticancer Res. 2004; 24(2B): 571-7.
  25. Dong B., Dai G., Xu L. et al. Tumor cell lysate induces the immunosuppression and apoptosis of mouse immunocytes. Mol. Med. Rep. 2014; 10(6): 2827-34.
  26. Chen Y.Z. , Yao X.L., Tabata Y. et al. Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin. Dev. Immunol. 2010; 2010: 565643
  27. Ashley D.M., Faiola B., Nair S. et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Med. 1997; 186(7): 1177-82.
  28. Nair S.K., Morse M., Boczkowski D. et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg. 2002; 235(4): 540-9.
  29. Weissman D., Ni H., Scales D. et al. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J. Immunol. 2000; 165(8): 4710-7.
  30. Nicolette C.A., Healey D., Tcherepanova I. et al. Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products. Vaccine 2007; 25 Suppl 2: B47-60.
  31. Boczkowski D., Nair S. RNA as performance-enhancers for dendritic cells. Expert. Opin. Biol. Ther. 2010; 10(4): 563-74.
  32. Morse M.A., Lyerly H.K. DNA and RNA modified dendritic cell vaccines. World J. Surg. 2002; 26(7): 819-25.
  33. Wei J., Gao W., Wu J. et al. Dendritic cells expressing a combined PADRE/MUC4-derived polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Cancer Biother. Radiopharm. 2008; 23(1): 121-8.
  34. Tsang K.Y., Palena C., Yokokawa J. et al. Analyses of recombinant vaccinia and fowlpox vaccine vectors expressing transgenes for two human tumor antigens and three human costimulatory molecules. Clin. Cancer Res. 2005; 11(4): 1597-607.
  35. Максютов А.З., Лопатникова Ю.А., Курилин В.В. и соавт. Исследование эффективности индукции цитотоксического иммунного ответа мононуклеарными клетками с помощью дендритных клеток, трансфицированных полиэпитопными конструкциями HER2/ ErbB2. Медицинская иммунология 2014; 16(5): 417-24.
  36. Kulikova E.V., Kurilin V.V., Shevchenko J.A. et al. Dendritic Cells Transfected with a DNA Construct Encoding Tumour-associated Antigen Epitopes Induce a Cytotoxic Immune Response Against Autologous Tumour Cells in a Culture of Mononuclear Cells from Colorectal Cancer Patients. Scand. J. Immunol. 2015; 82(2): 110-7.
  37. Lindquist J.A., Jensen O.N., Mann M. et al. ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. EMB0 J. 1998; 17(8): 2186-95.
  38. Lyko F., Martoglio B., Jungnickel B. et al. Signal sequence processing in rough microsomes. J. Biol. Chem. 1995; 270(34): 19873-8
  39. Martoglio B., Dobberstein B. Signal sequences: more than just greasy peptides. Trends Cell Biol. 1998: 8(10): 410-5.
  40. Ginodi I., Vider-Shalit T., Tsaban L. et al. Precise score for the prediction of peptides cleaved by the proteasome. Bioinformatics 2008; 24(4): 477-83.
  41. Louzoun Y., Vider T., Weigert M. T-cell epitope repertoire as predicted from human and viral genomes. Mol. Immunol. 2006; 43(6): 559-69
  42. Vider-Shalit T., Fishbain V., Raffaeli S. et al. Phase-dependent immune evasion of herpesviruses. J. Virol. 2007; 81(17): 9536-45.
  43. Bergmann C.C., Yao Q., Ho C.K. et al. Lanking residues alter antigenicity and immunogenicity of multi-unit CTL epitopes. J. Immunol. 1996; 157(8): 3242-9.
  44. Durantez M., Lopez-Vazquez A.B., De Cerio A.L. Induction of multiepitopic and long-lasting immune responses against tumour antigens by immunization with peptides, DNA and recombinant adenoviruses expressing minigenes. Scand. J. Immunol. 2009; 69(2): 80-9
  45. Parmiani G., Castelli C., Dalerba P. et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J. Natl. Cancer Inst. 2002; 94(11): 805-18.
  46. Tourdot S., Scardino A., Saloustrou E. et al. A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur. J. Immunol. 2000; 30(12): 3411-21.
  47. Smyth M.J., Cretney E., Kershaw M.H. et al. Cytokines in cancer immunity and immunotherapy. Immunol. Rev. 2004; 202: 275-93
  48. Якушенко Е.В., Лопатникова Ю.А., Сенников С.В. Интерлейкин-18 и его роль в иммунном ответе. Медицинская иммунология 2005; 7(4): 355-64.
  49. Курилин В.В., Хантакова Ю.Н., Облеухова И.А. и др. Стимуляция дендритными клетками in vitro противоопухолевой цито-токсической активности мононуклеарных клеток больных колоректальным раком. Медицинская иммунология 2013; 15(3): 235-46.
  50. Mellor A.L., Munn D.H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today. 1999; 20(10): 469-73.
  51. Chen W., Liang X., Peterson A. J. et al. The indoleamine 2.3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 2008; 181(8): 5396-404
  52. Curti A., Trabanelli S., Onofri C. et al. Indoleamine 2.3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica 2010; 95(12): 2022-30
  53. Voskoboinik I., Dunstone M.A., Baran K. et al. Perforin: structure, function, and role in human immunopathology. Immunol. Rev. 2010; 235(1): 35-54.
  54. Wajant H. CD95L/FasL and TRAIL in tumour surveillance and cancer therapy. Cancer Treat. Res. 2006; 130: 141-65.
  55. Malyguine A.M., Strobl S.L., Shurin M.R. Immunological monitoring of the tumor immunoenvironment for clinical trials. Cancer Immunol. Immunother. 2012; 61(2): 239-47.
  56. Keilholz U., Martus P., Scheibenbogen C. Immune monitoring of T-cell responses in cancer vaccine development. Clin. Cancer Res. 2006; 12 Suppl 7: 2346s-52s.
  57. Galluzzi L., Senovilla L., Vacchelli E. et al. Trial Watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1(7): 1111-34.
  58. Vacchelli E., Vitale I., Eggermont A. et al. Trial Watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2(10): e25771.
  59. Di L., Zhu Y. , Jia J. et al. Clinical safety of induced CTL infusion through recombinant adeno-associated virus-transfected dendritic cell vaccination in Chinese cancer patients. Clin. Transl. Oncol. 2012; 14(9): 675-81.
  60. Zhan H.L., Gao X., Pu X.Y. et al. A randomized controlled trial of postoperative tumor lysate-pulsed dendritic cells and cytokine-induced killer cells immunotherapy in patients with localized and locally advanced renal cell carcinoma. Chin. Med. J. (Engl. ) 2012; 125(21): 3771-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies