Role of potassium channels in the negative inotropic effect of hydrogen sulfide in mouse atrium



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effect of sodium hydrosulfide (NaHS) - donor of hydrogen sulfide (H2S) on the force of contraction of isolated mouse atrium was studied. Cumulative application of NaHS in concentrations 100, 200 and 300 ^M induced dose-dependent decrease of the force of contraction, the maximum velocity of contraction and relaxation of the myocardium. A substrate of H2S synthesis - L-cysteine in concentrations 1, 10, 50 uM also had the negative inotropic action, whereas a blocker of H2S synthesis - p-cyano alanine caused an increase of the force of contraction. Inhibition of K-channels by tetraethylammonium (2 mM) caused the increase of the amplitude of contraction and the reduction of negative inotropic effect of NaHS in all used concentrations. After the inhibition of ATP-dependent K-channels by glibenclamide NaHS action was prevented in concentration 100 uM, significantly decreased in concentration 200 uM and didn't changed in concentration 300 uM. Activation of ATP-dependent K-channels by diazoxide did not affect the negative inotropic effect of NaHS. The obtained data suppose that in the mouse atrium exogenous and endogenous H2S causes a reduction of the force of contraction, which is mediated by the activation of ATP-dependent, calcium-activated or voltage-dependent K-channels.

Full Text

Restricted Access

About the authors

A. S Lifanova

Kazan (Volga region) Federal University

N. N Khaertdinov

Kazan (Volga region) Federal University

A. V Zakharov

Kazan (Volga region) Federal University; Kazan State Medical University

A. R Gizzatullin

Kazan (Volga region) Federal University

G. F Sitdikova

Kazan (Volga region) Federal University

References

  1. Gerasimova E.V., Sitdikova G.F., Zefirov A.L. Hydrogen sulfide as an endogenous modulator of mediator release in the frog neuromuscular synapse. Neurochem. J. 2008; 2(1-2): 120-6.
  2. Sitdikova G.F., Gerasimova E.V., Khaertdinov N.N. et al. Role of cyclic nucleotides in effects of hydrogen sulfide on the mediator release in frog neuromuscular junction. Neurochem. J. 2009; 3(4): 282-7.
  3. Ситдикова Г.Ф., Зефиров А.Л. Сероводород: от канализаций Парижа к сигнальной молекуле. Природа 2010; 9: 29-37.
  4. Ситдикова Г.Ф., А.В. Яковлев, Одношивкина Ю.Г. и др. Влияние сероводорода на процессы экзо- и эндоцитоза синаптических везикул в двигательном нервном окончании лягушки. Нейрохимия 2011; 28(4): 1-7.
  5. Wang R. Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed. Physiol. Rev. 2012; 92: 791-896.
  6. Mitrukhina O.B., Yakovlev A.V., Sitdikova G.F. The Effects of Hydrogen Sulfide on the Processes of Exo and Endocytosis of Synaptic Vesicles in the Mouse Motor Nerve Endings. Biochem. Suppl. Series A: Membrane and Cell Biology 2013; 7t2): 170-3.
  7. Герасимова Е.В., Яковлева О.В., Зефиров А.Л. и др. Роль рианодиновых рецепторов в эффектах сероводорода на освобождение медиатора из двигательного нервного окончания лягушки. Бюл. экспер. биол. и мед. 2013; 155(1): 14-7.
  8. Шафигуллин М.У., Зефиров Р.А., Сабируллина Г.И. и др. Эффекты донора сероводорода на спонтанную сократительную активность желудка и тощей кишки крысы. Бюл. экспер. биол. и мед. 2014; 157(3): 275-280.
  9. Sitdikova G.F., Islamov R.R., Mukhamedyarov M.A. et al. Modulation of neurotransmitter release by carbon monoxide at the frog neuro-muscular junction. Curr Drug Metab, 2007; 8(2): 177-84
  10. Abramochkin D.V., Haertdinov N.N., Porokhnya M.V. et al. Carbon monoxide affects electrical and contractile activity of rat myocardium. J. Biomedical Sci. 2011; 18(1): 18-40.
  11. Hermann, A., Sitdikova G.F., Weiger T.M. Gasotransmitters: Physiology and Pathophysiology. Springer Press, Heidelberg. 2012; 204.
  12. Yakovleva O.V., Shafigullin M.U., Sitdikova G.F. The Role of Nitric Oxide in the Regulation of Neurotransmitter Release and Processes of Exo- and Endocytosis of Synaptic Vesicles in Mouse Motor Nerve Endings. Neurochem. J. 2013; 7(2): 103-10
  13. Wang R. Gasotransmitters: growing pains and joys. Trends Biochem. Sci. 2014; 39(5): 227-32.
  14. Hosoki R., Matsuki N., Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 1997; 237: 527-31.
  15. Yang G., Wu L., Jiang B. et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of сystathionine gamma-lyase. Science 2008; 322: 587-90.
  16. Fu M., Zhang W., Yang G. et al. Is cystathionine gamma-lyase protein expressed in the heart? Biochem. Biophys. Res. Commun. 2012; 428(4): 469-74.
  17. Dombkowski R.A., Russell M.J., Schulman A.A., et.al. Vertebrate phylogeny of hydrogen sulfide vasoactivity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005; 288: R243-R252.
  18. Sitdikova G.F., Khaertdinov N.N., Zefirov A.L. Role of calcium and potassium channels in effects of hydrogen sulfide on frog myocardial contractility. Bull. Exp. Biol. Med. 2011; 151: 163-6.
  19. Liu Y.H., Lu M., Hu L.F. et.al. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid. Redox Signal. 2012; 17: 141-85.
  20. Khaertdinov N.N., Ahmetshina D.R., Zefirov A.L. et.al. Hydrogen Sulfide in Regulation of Frog Myocardium Contractility. Biochemistry (Moscow). Suppl. Series A: Membrane and Cell Biology 2013; 7(1): 52-7.
  21. Geng B., Yang J., Qi Y. et.al. H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun. 2004; 313: 362-8.
  22. Sun Y., Cao Y., Wang W. et al. Hydrogen sulfide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocites. Cardiovasc. Res. 2008; 79(4): 632-41.
  23. Mazza R., Pasqua T., Cerra M.C. et al. Akt/eNOS signaling and PLN S-sulfhydration are involved in H2S-dependent cardiac effects in frog and rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 305: R443-R451.
  24. Абрамочкин Д.В., Моисеенко Л.С., Кузьмин В.С. Влияние сероводорода на электрическую активность предсердного миокарда крысы. Бюлл. эксп. биол. мед. 2009; 147(VI): 617-21.
  25. Yong Q.C., Pan T.T., Hu L.F. et.al. Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts. J. Mol. Cell Cardiol. 2008; 44(4): 701-10.
  26. Zhang R., Sun Y., Tsai H. et al. Hydrogen Sulfide Inhibits L-Type Calcium Currents Depending upon the Protein Sulfhydryl State in Rat Cardiomyocytes. PLoS ONE 2012; 7(5): 1-11.
  27. Beauchamp R.O., Bus J.S., Popp J.A. et.al. A critical review of the literature on hydrogen sulfide toxicity. Critical Rev. in Tox. 1984; 13: 25-97.
  28. Maclean K.N., Kraus E., Kraus J.P. The dominant role of Spl in regulating the cystathionine p-synthase-la and -lb promoters facilitates potential tissue-specific regulation by Kruppel-like factors. Biol. Chem. 2004; 279: 8558-66.
  29. Nerbonne J.M., Kass R.S. Molecular Physiology of Cardiac Repolarization. Physiol. Rev. 2005; 85: 1205-53.
  30. Richie J.P.Jr., Lang C.A. The determination of glutathione, cyst(e)ine, and other thiols and disulfides in biological samples using high-performance liquid chromatography with dual electrochemical detection. Ann. Biochem. 1987; 163: 9-15.
  31. Xu Y., Tuteja D., Zhang Z. et al., Molecular Identification and Functional Roles of a Ca2-activated K-Channel in Human and Mouse Hearts. J. biol. chem. 2003; 278(49): 49085-94.
  32. Mu Y.H., Zhao W.C., Duan P. et al. RyR2 modulates a Ca2 + -activated K+ current in mouse cardiac myocytes. PLoS One 2014; 9(4): e94905.
  33. Sitdikova G.F., Weiger T.M., Hermann A. Hydrogen sulfide increases calcium-activated potassium 5 (BK) channel activity of rat pituitary tumor cells. Pflugers Arch. - Eur. J. Physiol. 2010; 459: 389-97.
  34. Martellia A, Testaia L., Breschia M.C. et al. Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels A. Pharmacol. Res. 2013; 70: 27-34.
  35. Noma A. ATP-regulated potassium channels in the heart. Nature 1983; 305: 147-8.
  36. Gross G.J., Fryer R.M. Sarcolemmal versus mitochondrial ATP-sensitive K-channels and myocardial preconditioning. Circ. Res.1999; 84: 973-9.
  37. Zhao W., Zhang J., Lu Y. et.al. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP)-channel opener. EMBO J. 2001; 20: 6008-16.
  38. Mustafa A.K., Sikka G., Gazi S.K., et.al. Snyder S.H. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011; 109: 1259-68.
  39. Cerra M.C., Imbrogno S. Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol. (Oxf). 2012; 205: 9-25.
  40. Chen Y., Zhao J., Du J. et.al. Hydrogen sulfide regulates cardiac sarcoplasmic reticulum Ca2 uptake via K(ATP)-channel and PI3K/Akt pathway. Life Sci. 2012; 91: 271-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies