Research of osteoplastic properties of matrixes from resolving polyether of hydroxioil acid


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A family of extensions! implants with different composition was designed for reparative osteogenesis. The implants are made of a resorblng polymer of the hydroxybutyric acid (poly-3- hydroxybutyrate), a composition of this polymer with hydroxylapatite, and combination of poly-3-hydroxybutyrate with the recombinant human morphogenetic bone protein-2 (BMP-2). The properties of the implants developed were studied in experimental animals with segmental osteotomy in comparison with standard materials used in stomatology. Reconstructive osteogenesis has been shown to be active in all the implants containing poly-3-hydroxybutyrate as a main component. Poly-3- hydroxybutyrate itself as well as its compositions with hydroxylapatite and a morphogenetic protein BMP-2 have marked osteoplastic properties, degrade in vivo slowly and adequately to the growth of new bone tissue, promoting reparative osteogenesis.

全文:

受限制的访问

作者简介

E. Shishatskay

Institute of Biophysics, Siberian Branch of RAS; Department of Biotechnologies, Siberian Federal University

编辑信件的主要联系方式.
Email: shishatskaya@inbox.ru
俄罗斯联邦, Krasnoyarsk; Krasnoyarsk

I. Kamendov

Krasnoyarsk Stomatology Research Center for diabetes mellitus

Email: shishatskaya@inbox.ru
俄罗斯联邦, Krasnoyarsk

S. Starosvetsky

Krasnoyarsk Stomatology Research Center for diabetes mellitus

Email: shishatskaya@inbox.ru
俄罗斯联邦, Krasnoyarsk

T. Volova

Institute of Biophysics, Siberian Branch of RAS; Department of Biotechnologies, Siberian Federal University

Email: shishatskaya@inbox.ru
俄罗斯联邦, Krasnoyarsk; Krasnoyarsk

参考

  1. Bourne R.B. Fractures of the patella after total knee replacement. Orthop. Clin. North Am. 1999; 2:287-91.
  2. Шевцов В.И., Попова Л.А. Совершенствование способов чрескостного остеосинтеза — новая методология реабилитации больных в травматологии и ортопедии. Курортные ведомости 2006; 38: 136-40.
  3. Alberts К.A., Loohagen G., Einarsdottir Н. Open tibial fractures: faster union after unreamed nailing than external fixation. Injury. 1999; 8: 519—23.
  4. Sackett K., Hendricks C., Pope R. Collaboration: an innovative education/business partnership. Case Manager 2000; 6: 40-4.
  5. Vacanti C.A, Vacanti J.P. The science of tissue engineering. Orthop. Clin. North Am. 2000; 31: 51-6.
  6. Terada S., Sato M., Sevy A., Vacanti J.P. Tissue engineering in the twenty-first century. Yonsei. Med. J. 2000; 41: 685—91.
  7. Деев P.B., Исаев A.A., Кочиш А.Ю., Тихилов Р.М. Клеточные технологии в травматологии и ортопедии: пути развития. Клеточная трансплантология и тканевая инженерия 2007; 2(4): 18—30.
  8. Lendekel S., Jodickle, Christophist Р. Autologous stem cells and fibrin glue used to treat widespread traumatic calvarial defects:case report. J. Cranio—Maxilljfac. Surg. 2004, 32: 370—3.
  9. Liu W., Cui L., Cao Y. Mesenchymal Stem Cells and Tissue Engineering. In.: Methods in Enzymology. Editor-in-Chief J.N. Abeison, M.l. Simon. 2006; 420: 261-339.
  10. Mistry A.S, Mikos A.G. Tissue engineering. Strategiest for Bone Regenerations. Adv. Biochem. Engin. Biotechnol. 2005; 94: 1—22.
  11. Wang M. Developing bioactive composite materials for tissue replacement. Biomat. 2003; 24: 2133—51.
  12. Uemura T., Dong Y., Wang Y., Kojima H. et al. Transplantation of cultured bone calls using combinations of scaffolds and culture techniques. Biomat. 2003; 24: 2277-86.
  13. Shin H., Jo S., Mikos A.G. Biomimetic materials for tissue engineering. Biomat. 2003; 24: 4353—64.
  14. Hartman H.M., Vehof J.W.M., Spauwen P.H.M., Jansen Y.A. Ectopic bone formation in rats: the importance of the carrier. Biomat. 2005; 26: 1829-35.
  15. Urist M.R. Bone: Formation by autoinductio. Science 1965; 50: 893-9.
  16. Urist M.R., Leitze A., Davidson E. p-tricalcium phosphate delivery system for bone morphogenetic protein. Clin. Ortop. 1984; 187: 277—9.
  17. Damien C.J., Parsons J.R. Bone graft and bone graft substitutes:a review of current technology and applications. J. Appl. Biomat. 1991; 2: 187-208.
  18. John K.R., Zardiackas L.D., Terry R.C. Histological and electron microscopic analysis of tissue—response to synthetic composite bone graft in the canine. J. Appl. Biomat. 1995; 6: 89—97.
  19. Yamasaki H., Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomat.1992; 5: 308—12.
  20. Yang Z., Yuan H., Tong W. Osteogenesis in extraskeletal implanted porous calcium phosphate ceramics:variability among different kinds of animals. Biomat. 1996; 17: 2131—7.
  21. Urist M.R., Budy A., Me Lean F. Purification of bone morpogenetic protein by hydroxyapatite chromatography. PNAS USA 1984; 81: 371—5.
  22. Li Y. Synthesis and characterisation of bone-like minerals: Macroscopic approach and microscopic emulation. Leiden; 1994: 119.
  23. Moroni A., Moroni A., Aspenberg P., Toksvig-Larsen S. Enhanced fixation witn hydroxyapatite coated pins. Clin. Orthop. Related Res. 1998; 346: 171-7.
  24. Layrolle P., van der Valk C., Dalmeijer R. Biomimetic calcium phosphate coating and their biological performances. Bioceramics 2001; 13: 391-4.
  25. Леонтьев В.К., Воложин А.И., Курдюмов С.Е. «Еидроксиапол» и «Колапол» в стоматологии. НС 1995; 5: 32—5.
  26. Десятиченко К.С., Курдюмов С.Е. Тенденции в конструировании тканеинженерных систем для остеопластики. Клеточная трансплантология и тканевая инженерия 2008; 3(2): 62—9.
  27. Еригорьянц Л.А., Рабухина Н.А., Бадалян В.А. Применение остеопластических материалов при хирургическом лечении больных с радикулярными кистами, прорастающими в верхнечелюстной синус и полость носа. Клиническая стоматология — 1998; 3: 36—8.
  28. Лошкарев В.П., Баученко Е.В. Сравнительная характеристика отдаленных результатов применения биопланта и колапола-КПЗ и методика введения костной раны под кровяным спуском при хирургическом лечении хронического периодонтита, околокорневых кист. Стоматология 2000; 6: 23-6.
  29. Suchanek W, Yashima М, Kakihana М, Yoshimura М. Flydroxyapatite ceramics with selected sintering additives. Biomat. 1997; 18: 923—33.
  30. Vacanti C.A, Vacanti J.P. The science of tissue engineering. Orthop. Clin. North Am. 2000; 31: 351-6.
  31. Mistry A.S, Mikos A.G., Jansen J.A. Degradation and biocompatibility of a polytpropylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering. J. Biomed. Mater. Res. 2007; 83: 940-53.
  32. Link D.P, van den Dolder J., van den Beucken J.J. et al. Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites. J. Biomed. Mater. Res. 2008; [Epub ahead of print].
  33. Williams S.F., Martin D.P. Applications of PHAs in Medicine and Faarmaacy: in Series of Biopolymers in 10 vol. (Ed A. Steinbbchel). Wiley- VCYVerlag GmbH. 2002; 4: 91-121.
  34. Sudesh K. Microbial polyhydroxyalkanoates (PHAs): an emerging biomaterial for tissue engineering and therapeutic applications. Med. J. Malaysia 2004; 59: 55—66.
  35. Luklinska Z.B, Schluckwerder H. In vivo response to HA- polyhydroxybutyrate/polyhydroxyvalerate composite. J. Microsc. 2003; 211: 121-9.
  36. Кцsе G.T, Korkusuz F., Korkusuz P., Hasirci V. In vivo tissue engineering of bone using poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and collagen scaffolds. Tissue Eng. 2004; 10: 1234—50.
  37. Coskun S., Korkusuz F., Hasirci V. Hydroxyapatite reinforced poly(3— hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based degradable composite bone plate. J. Bioma. Sci. Polym. Ed. 2005; 16: 1485-1502.
  38. Волова Т.Г., Севастьянов В.И., Шишацкая Е.И. Поли- оксиалканоаты — биоразрушаемые полимеры для медицины (под ред. В.И. Шумакова). 2006. Красноярск, изд-во Платина: 288.
  39. Шумаков В.И., Шишацская Е. И., Волова Т.Г. и др. Экспериментальноклиническое обоснование к применению резорбируемых полигидроксиалканоатов в медицине. Материалы IV съезда Всеросийского общества биохимиков и молекулярных биологов. Новосибирск, 11—15 мая 2008: 364.
  40. Шишацкая Е.И., Беляев Б.А., Васильев А.Д. и др. Структура и физико-химические свойства гибридного композита полигицроксибутират/ гидроксиапатит. Перспективные материалы 2005; 1: 40—6.
  41. Шишацкая Е.И. Биосовместимые и функциональные свойства гибридного композита полигидроксибутират/гидроксиапатит. Вестник трансплантологии и искусственных органов 2006; 3: 34—8.
  42. Shishatskaya E.I., Chlusov I.A., Volova T.G. A hybrid PHA- hydroxyapatite composite for biomedical application: production and investigation. J. Biomat. Sci.: Polymer Edn. 2006; 17: 481—98.
  43. Барченко E.H., Кесян E.A., Уразгильдяев 3.3. и др. Сравнительное экспериментально-морфологическое исследование влияния некоторых используемых в травматолого-ортопедической практике кальций- фосфатных материалов на активизацию репаративного остеогенеза. Бюллетень Восточно-Сибирского научного центра Сибирского отделения РАМН 2006; 4: 327-32.
  44. Арсеньев И.Е. экспериментально-морфологическое обоснование клинического применения деградируемых биоимплантаггов в комплексном лечении переломов и ложных суставов длинных трубчатых костей. Автореферат диссертации на соискание ученой степени кандидата мед. наук. ФГУ ЦИТО им. Н.Н. Приорова. Москва, 2007.
  45. Яценко В.П., Кабак К.С., Терещенко Т.Л., Коломийцев А.К. Морфологические и биохимические аспекты биодеструкции полимеров. Киев: Наукова думка 1986: 73.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Transverse cuts of bones in the area of the defect: I - PHB; II - PHB/HAP composite); III - PHA/gVMP-2; IV- "Bio-OSS®", V- "Collapan®". SW. ×25

下载 (77KB)
3. Fig. 2. Regenerate in the area of PHB implantation, 14 days: A - proliferation of osteogenic tissue around PHB fragments (1); B - newly formed Haversian systems. Staining: hematoxylin and eosin. SW: A - ×100; B - ×400

下载 (240KB)
4. Fig. 3. Regenerate in the area of PHB/HAP implantation, 14 days: A - newly formed bone beams built from immature bone tissue; B — a fragment of the implanted material surrounded by reactively altered connective tissue and bone beams. Staining: hematoxylin and eosin. SW. ×100

下载 (293KB)
5. Fig. 4. Regenerate in the area of implantation of PHA/rhBMP-2, 14 days: A - field of cartilage tissue, which is a springboard for the deployment of enchondral osteogenesis; B - implant fragments surrounded by reactively altered connective tissue. Staining: hematoxylin and eosin. SW. ×100

下载 (227KB)
6. Fig. 5. Regenerate in the area of implantation of the Collapol® preparation, 14 days: A — disordered bone trabeculae and fragments of resorbable material; B - a fragment of the Collapol® material surrounded by osteogenic tissue. Staining: hematoxylin and eosin. SW. ×100

下载 (200KB)
7. Fig. 6. Regenerate in the area of implantation of the preparation "Bio-OSS®", 14 sec.: reactive growths of mineralized tissue around the resorbable components of the material. Staining: hematoxylin and eosin. SW. ×100

下载 (183KB)

版权所有 © Eco-Vector, 2023



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 
##common.cookie##