Long QT syndrome: genetic analysis of patients

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Genetic analysis plays an important role in diagnostics of cardiovascular diseases. One of the diseases is long QT syndrome that results in an increased risk of ventricular tachycardia and sudden cardiac death. The syndrome may be caused by mutations in genes responsible for cardiomyocyte ionic channel functioning. The aim of this study is to examine genetics of long QT syndrome. Genetic analysis of 16 patients with long QT syndrome or suspicion of the syndrome was carried out. Long QT syndrome causing mutations, p.Ala178Pro, p.Val254Met, p.Gly325Arg in KCNQ1 and p.Thr613Met in KCNH2, and a long QT syndrome-associated polymorphism, p.Asp85Asn in KCNE1, were found in five patients. Family analysis of p.Ala178Pro and p.Val254Met mutations in KCNQ1 revealed the mutations carriers that had not demonstrated any syndrome manifestations before. In addition, a mutation, p.Gly604Ala in KCNH2, was found. The mutation has not been previously described and its role in long QT syndrome needs to be clarified.

Full Text

Restricted Access

About the authors

E. V Dementyeva

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the RAS; E.N. Meshalkin National Medical Research Center; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the RAS

S. P Medvedev

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the RAS; E.N. Meshalkin National Medical Research Center; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the RAS; Novosibirsk State University

E. A Elisaphenko

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the RAS; E.N. Meshalkin National Medical Research Center; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the RAS

S. A Bayramova

E.N. Meshalkin National Medical Research Center

E. A Pokushalov

E.N. Meshalkin National Medical Research Center

K. I Agladze

Moscow Institute of Physics and Technology

S. M Zakian

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the RAS; E.N. Meshalkin National Medical Research Center; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the RAS; Novosibirsk State University

References

  1. Crotti L., Celano G., Dagradi F. et al. Congenital long QT syndrome. Orphanet J. Rare Dis. 2008; 3: 18.
  2. Hedley P.L., Jorgensen P., Schlamowitz S. et al. The genetic basis of long QT and short QT syndromes: a mutation update. Hum. Mutat. 2009; 30(11): 1486-511.
  3. Schwartz P.J., Stramba-Badiale M., Crotti L. et al. Prevalence of the congenital long-QT syndrome. Circulation 2009; 120(18): 1761-7.
  4. Roden D.M. Acquired long QT syndromes and the risk of proarrhythmia. J. Cardiovasc. Electrophysiol. 2000; 11(8): 938-40.
  5. Boczek N.J., Best J.M., Tester D.J. et al. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ. Cardiovasc. Genet. 2013; 6(3): 279-89.
  6. Moss A.J., Zareba W., Hall W.J. et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 2000; 101(6): 616-23.
  7. Viskin S., Fish R. Prevention of ventricular arrhythmias in the congenital long QT syndrome. Curr. Cardiol. Rep. 2000; 2(6): 492-7.
  8. Priori S.G., Napolitano C., Schwartz P.J. et al. Association of long QT syndrome loci and cardiac events among patients treated with betablockers. JAMA 2004; 292(11): 1341-4.
  9. Sinnecker D., Goedel A., Dorn T. et al. Modeling long-QT syndromes with iPS cells. J. Cardiovasc. Transl. Res. 2013; 6(1): 31-6.
  10. Shimizu W., Horie M., Ohno S. et al. Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. J. Am. Coll. Cardiol. 2004; 44(1): 117-25.
  11. Moss A.J., Shimizu W., Wilde A.A. et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 2007; 115(19): 2481-9.
  12. Priori S.G., Napolitano C., Schwartz P.J. Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999; 99(4): 529-33.
  13. Moss A.J., Zareba W., Kaufman E.S. et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 2002; 105(7): 794-9.
  14. Scicluna B.P., Wilde A.A., Bezzina C.R. The primary arrhythmia syndromes: same mutation, different manifestations. Are we starting to understand why? J. Cardiovasc. Electrophysiol. 2008; 19(4): 445-52.
  15. Wang Q., Curran M.E., Splawski I. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 1996; 12(1): 17-23.
  16. Donger C., Denjoy I., Berthet M. et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation 1997; 96(9): 2778-81.
  17. Tanaka T., Nagai R., Tomoike H. et al. Four novel KVLQT1 and four novel HERG mutations in familial long-QT syndrome. Circulation 1997; 95(3): 565-7.
  18. Shalaby F.Y., Levesque P.C., Yang W.P. et al. Dominant-negative Kv-LQT1 mutations underlie the LQT1 form of long QT syndrome. Circulation 1997; 96(6): 1733-6.
  19. Splawski I., Shen J., Timothy K.W. et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000; 102(10): 1178-85.
  20. Paulussen A., Matthijs G., Gewillig M. et al. Mutation analysis in congenital long QT syndrome - a case with missense mutations in KCNQ1 and SCN5A. Genet. Test. 2003; 7(1): 57-61.
  21. Choi G., Kopplin L.J., Tester D.J. et al. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation 2004; 110(15): 2119-24.
  22. Lupoglazoff J.M., Denjoy I., Villain E. et al. Long QT syndrome in neonates: conduction disorders associated with HERG mutations and sinus bradycardia with KCNQ1 mutations. J. Am. Coll. Cardiol. 2004; 43(5): 826-30.
  23. Jongbloed R.J., Wilde A.A., Geelen J.L. et al. Novel KCNQ1 and HERG missense mutations in Dutch long-QT families. Hum. Mutat. 1999; 13(4): 301-10.
  24. Van Langen I.M., Birnie E., Alders M. et al. The use of genotype-phenotype correlations in mutation analysis for the long QT syndrome. J. Med. Genet. 2003; 40(2): 141-5.
  25. Bezzina C.R., Verkerk A.O., Busjahn A. et al. A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc. Res. 2003; 59(1): 27-36.
  26. Gouas L., Nicaud V., Berthet M. et al. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur. J. Hum. Genet. 2005; 13(11): 1213-22.
  27. Pfeufer A., Jalilzadeh S., Perz S. et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ. Res. 2005; 96(6): 693-701.
  28. Newton-Cheh C., Guo C.Y., Larson M.G. et al. Common genetic variation in KCNH2 is associated with QT interval duration: the Framingham Heart Study. Circulation 2007; 116(10): 1128-36.
  29. Marjamaa A., Newton-Cheh C., Porthan K. et al. Common candidate gene variants are associated with QT interval duration in the general population. J. Intern. Med. 2009; 265(4): 448-58.
  30. Mank-Seymour A.R., Richmond J.L., Wood L.S. et al. Association of torsades de pointes with novel and known single nucleotide polymorphisms in long QT syndrome genes. Am. Heart J. 2006; 152(6): 1116-22.
  31. Sun Z., Milos P.M., Thompson J.F. et al. Role of a KCNH2 polymorphism (R1047L) in dofetilide-induced Torsades de Pointes. J. Mol. Cell. Cardiol. 2004; 37(5): 1031-9.
  32. Nishio Y., Makiyama T., Itoh H. et al. D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J. Am. Coll. Cardiol. 2009; 54(9): 812-9.
  33. Chen L., Zhang W., Fang C. et al. Polymorphism H558R in the human cardiac sodium channel SCN5A gene is associated with atrial fibrillation. J. Int. Med. Res. 2011; 39(5): 1908-16.
  34. Zhang Y., Zhou N., Jiang W. et al. A missense mutation (G604S) in the S5/pore region of HERG causes long QT syndrome in a Chinese family with a high incidence of sudden unexpected death. Eur. J. Pediatr. 2007; 166(9): 927-33.
  35. Amin A.S., Pinto Y.M., Wilde A.A. Long QT syndrome: beyond the causal mutation. J. Physiol. 2013; 591(17): 4125-39.
  36. Amin A.S., Giudicessi J.R., Tijsen A.J. et al. Variants in the 3' untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur. Heart J. 2012; 33(6): 714-23.
  37. Duchatelet S., Crotti L., Peat R.A. et al. Identification of a KCNQ1 polymorphism acting as a protective modifier against arrhythmic risk in long-QT syndrome. Circ. Cardiovasc. Genet. 2013; 6(4): 354-61.
  38. Kolder I.C., Tanck M.W., Postema P.G. et al. Analysis for genetic modifiers of disease severity in patients with long-QT syndrome type 2. Circ. Cardiovasc. Genet. 2015; 8(3): 447-56.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies