The modern strategies for working out of transplant tolerance by using blood and bone marrow cells



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review presents analysis of the modern state of transplant tolerance forming problem in recipient organism by using stem/ progenitory cells of bone marrow (BM) and differentiated immunoregulatory (tolerogenic) subsets of blood cells-regulatory B- and T-lymphocytes (Treg), and regulatory dendritic cells (DCreg). It is pointed out that protocols based on the using BM cells, permit to work out the tolerance state and now they are estimate at clinical kidney transplantation, during multicentre investigations. Protocols, based on the using of Treg and DCreg, do note gain the impression of reliable, although at the application of their cells the tolerogenic effect can be obtain. It was given supposition that at using BM cells the forming of steady transplant tolerance state is a result of successive entering of central (thymical induction of temporary mixed chimer-ism) and peripheral tolerance mechanisms. Treg and DCreg induce mechanisms only peripheral tolerance. Combined application of BM cells and Treg permits to increase the terms for maintaining of donor chimerism into all cell lines (incuding Tcells) and transplant tolerance in recipient organism.

Full Text

Restricted Access

About the authors

N. A Onischenko

V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation

Email: allanik64@yandex.ru

References

  1. Готье. С.В., редактор. Иммуносупрессия при трансплантации солидных органов. М.-Тверь: Триада; 2011.
  2. Sachs D.H., Kawai T., Sykes M. Induction of tolerance through mixed chimerism. Cold Spring Harb. Perspect. Med. 2014; 4t1): a015529.
  3. Cosimi A.B., Sachs D.H., Sykes M. et al. HLA-Mismatched Renal Transplantation without Maintenance Immunosuppression. N. Engl. J. Med. 2013; 368(19): 1850-2.
  4. Casiraghi F., Perico N., Cortinovis M. et al. Mesenchymal stromal cells in renal transplantation: opportunities and challenges. Nat. Rev. Nephrol. 2016; 12(4): 241-53.
  5. Braza F., Racape M., Soulillou J. et al. Tolerance in kidney transplantation. Rijeka, Croatia: InTech; 2011.
  6. Dons E.M., Raimondi G., Cooper D.K. et al. Induced Regulatory T cells: Mechanisms of Conversion and Suppressive Potential. Hum. Immunol. 2012; 73(4): 328-34.
  7. Shabir S., Girdlestone J., Briggs D. et al. Transitional B lymphocytes are associated with protection from kidney allograft rejection: a prospective study. Am. J. Transplant. 2015; 15(5): 1384-91.
  8. Carretero-Iglesia L., Bouchet-Delbos L., Louvet C. et al. Comparative study of the immunoregulatory capacity of in vitro generated tolerogenic dendritic cells, suppressor macrophages, and myeloid-derived suppressor cells. Transplantation 2016; 100(10): 2079-89.
  9. Holtick U., Wang X.N., Marshall S.R. et al. In vitro PUVA treatment preferentially induces apoptosis in alloactivated T cells. Transplantation 2012; 94(5): e31-4.
  10. Marques M.B., Schwartz J. Update on extracorporeal photopheresis in heart and lung transplantation. J. Clin. Apher. 2011; 26(3): 146-51.
  11. Kusztal M., Koscielska-Kasprzak K., Gdowska W. et al. Extracorporeal photopheresis as an antirejection prophylaxis in kidney transplant recipients: preliminary results. Transplant. Proc. 2011; 43(8): 2938-40.
  12. Ватазин А.В., Зулькарнаев А.Б., Кильдюшевский А.В. и соавт. Некоторые механизмы действия экстракорпоральной фотохимиотерапии при трансплантации солидных органов. Вестник трансплантологии и искусственных органов 2014; XVI(1): 76-84.
  13. Кильдюшевский А.В., Ватазин А.В., Федулкина В.А. и др. Способ профилактики и лечения отторжения почечного трансплантата. Патент РФ на изобр. №:2508924. 10 марта 2014.
  14. Amodio G., Gregori S. Human tolerogenic DC-10: perspectives for clinical applications. Transplant. Res. 2012; 1(1): 14.
  15. Kawai T., Cosimi A.B., Spitzer T.R. et al. HLA-Mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 2008; 358(4): 353-61.
  16. Riquelme P., Geissler E.K., Hutchinson J.A. Alternative approaches to myeloid suppressor cell therapy in transplantation: comparing regulatory macrophages to tolerogenic DCs and MDSCs. Transplant. Res. 2012; 1: 17.
  17. Мещерин С.С., Онищенко Н.А., Баранова О.В. и др. Влияние аллогенных мультипотентных мезенхимальных стромальных клеток костного мозга на формирование противоишемической резистентности почек. Вестник трансплантологии и искусственных органов 2015; XVII(4): 46-53.
  18. Ezzelarab M.B., Zhang H., Guo H. et al. Regulatory T cell infusion can enhance memory T cell and alloantibody responses in lymphodepleted nonhuman primate heart allograft recipients. Am. J. Transplant. 2016; 16(7): 1999-2015.
  19. Rebollo-Mesa I., Nova-Lamperti E., Mobillo P. et al. Biomarkers of tolerance in kidney transplantation: are we predicting tolerance or response to immunosuppressive treatment? Am. J. Transplant. 2016; 16(12): 3443-57.
  20. Dons E.M., Raimondi G., Cooper D. et al. Non-human primate regulatory T cells: current biology and implications for transplantation. Transplantation 2010; 90(8): 811-6.
  21. Starzl T.E. Chimerism and tolerance in transplantation. PNAS USA 2004; 101 (Suppl 2): 14607-14.
  22. Orlando G., Hematti P., Stratta R.J. et al. Clinical operational tolerance after renal transplantation: current status and future challenges. Ann. Surg. 2010; 252(6): 915-28.
  23. Szabolcs P., Burlingham W.J., Thomson A.W. Tolerance after Solid Organ and Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2012; 18 Suppl 1: S193-200.
  24. Kurtz J., Wekerle T., Sykes M. Tolerance in mixed chimerism - a role for regulatory cells? Trends Immunol. 2004; 25(10): 518-23.
  25. Strober S., Spitzer T.R., Lowsky R. et al. Translational Studies in Hematopoietic Cell Transplantation:Treatment of Hematologic Malignancies as a Stepping Stone to Tolerance Induction. Semin. Immunol. 2011; 23(4): 273-81.
  26. Scandling J.D., Busque S., Dejbakhsh-Jones S. et al. Tolerance and Withdrawal of Immunosuppressive Drugs in Patients Given Kidney and Hematopoietic Cell Transplants. Am. J. Transplant. 2012; 12(5): 1133-45.
  27. Girlanda R., Kirk A.D. Frontiers in Nephrology: Immune Tolerance to Allografts in Humans. J. Am. Soc. Nephrol. 2007; 18(8): 2242-51.
  28. Sachs D.H., Sykes M., Kawai T. et al. Immuno-intervention for the Induction of transplantation tolerance through mixed chimerism. Semin. Immunol. 2011; 23(3): 165-73.
  29. Yamada Y., Benichou G., Cosimi A.B. et al. Tolerance induction after organ transplantation; "delayed tolerance" via the mixed chimerism approach. Chimerism 2012; 3(1): 24-8.
  30. Feng S. Long-term management of immunosuppression after pediatric liver transplantation: is minimization or withdrawal desirable and/or possible? Curr. Opin. Organ Transplant. 2008; 13(5): 506-12.
  31. Madariaga M.L., Spencer P.J., Shanmugarajah K. et al. Effect of tolerance versus chronic immunosuppression protocols on the quality of life of kidney transplant recipients. JCI Insight 2016; 1(8): e87019.
  32. Granados J.M., Benichou G., Kawai T. Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Curr. Opin. Organ Transplant. 2015; 20(1): 49-56.
  33. Oura T., Ko D.S., Boskovic S. et al. Kidney versus Islet allograft survival after induction of mixed chimerism with combined donor bone marrow transplantation. Cell Transplant. 2016; 25(7): 1331-41.
  34. Elias N., Cosimi A.B., Kawai Т. Clinical trials for induction of renal allograft tolerance. Curr. Opin. Organ Transplant. 2015; 20(4): 406-11.
  35. Tonsho M.S., Lee S., Aoyama A. et al. Tolerance of lung allografts achieved in nonhuman primates via mixed hematopoietic chimerism. Am. J. Transplant. 2015; 15(8): 2231-9.
  36. Oura T., Hotta K., Cosimi A.B. et al. Transient mixed chimerism for allograft tolerance. Chimerism 2015; 6(1-2): 21-6.
  37. Adeyi O., Fischer S.E., Guindi M. Liver allograft pathology: approach to interpretation of needle biopsies with clinicopathological correlation. J. Clin. Pathol. 2010; 63: 47-74.
  38. Caridade M., Graca L., Ribeiro R.M. Mechanisms underlying CD4+ Treg immune regulation in the adult: from experiments to models. Front. Immunol. 2013; 4: 378
  39. Онищенко Н.А., Артамонов С.Д., Крашенинников М.Е. и др. Индивидуальная устойчивость стереотипов иммунного реагирования и современные возможности их диагностики при трансплантации органов (иммуно-физиологический анализ проблемы). Вестник трансплантологии и искусственных органов 2013; 15(2): 123-35.
  40. Bashuda H., Shimizu A., Uchiyama M. et al. Prolongation of renal allograft survival by anergic cells: advantages and limitations. Clin.Transplant. 2010: 24 Suppl 22: 6-10.
  41. Момыналиев К.Т., Огай В.Б., Хорошун Е.В. и др. Клеточные технологии в трансплантации почки. Нефрология и диализ 2014; 16(4): 439-52.
  42. Ma A., Qi S., Song L. et al. Adoptive transfer of CD4 + CD25 + regulatory cells combined with low-dose sirolimus and anti-thymocyte globulin delays acute rejection of renal allografts in Cynomolgus monkeys. International immunopharmacology 2011; 11(5): 618-29.
  43. Bashuda H., Kimikawa M., Seino K. et al. Renal allograft rejection is prevented by adoptive transfer of anergic T cells in nonhuman primates. J. Clin. Invest. 2005; 115(7): 1896-902.
  44. Ezzelarab M.B., Zahorchak A.F., Lu L. et al. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates. Am. J. Transplant. 2013; 13(8): 1989-2005.
  45. Thomson A.W., Zahorchak A.F., Ezzelarab M.B. et al. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation. Front. Immunol. 2016; 7: 15.
  46. Ziegler S.F. FOXP3: not just for regulatory T cells anymore. Eur. J. Immunol. 2007; 37(1): 21.
  47. Feuerer M., Hill J.A., Kretschmer K. et al. Genomic definition of multiple ex vivo regulatory T cell subphenotypes. PNAS USA 2010; 107(13): 5919.
  48. Abadja F., Sarraj B., Ansari M.J. Significance of Th17 Immunity in Transplantation. Curr. Opin. Organ Transplant. 2012; 17(1): 8-14.
  49. Chen W., Jin W., Hardegen N. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003; 198(12): 1875.
  50. Fu S., Zhang N., Yopp A.C. et al. TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25-precursors. Am. J. Transplant. 2004; 4(10): 1614.
  51. Zheng S.G., Gray J.D., Ohtsuka K. et al. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J. Immunol. 2002; 169(8): 4183.
  52. Barnes M.J., Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity 2009; 31(3): 401-11.
  53. Kendal A.R., Chen Y., Regateiro F.S. et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J. Exp. Med. 2011; 208(10): 2043-53.
  54. Chaudhry A., Rudensky A.Y. Control of inflammation by integration of environmental cues by regulatory T cells. J. Clin. Invest. 2013; 123(3): 939-44.
  55. Быковская С.H., Караулов A.B., Лысюк E.Ю. Способ обогащения регуляторных CД4 + CД25 + FoxP3+T-клеток человека ex vivo. Патент РФ на изобр. № 2437933. 27 декабря 2011.
  56. Suarez-Alvarez B., Raneros A.B., Ortega F. et al. Epigenetic modulation of the immune function. A potential target for tolerance. Epigenetics 2013; 8t7): 694-702.
  57. Sagoo P., Lombardi G., Lechler R.I. Relevance of regulatory T cell omotion of donor-specific tolerance in solid organ transplantation. Front. Immunol. 2012; 3: 184.
  58. Duran-Struuck R., Sondermeijer H.P., Bühler L. et al. Effect of ex vivo Expanded Recipient Regulatory T Cells on Hematopoietic Chimerism and Kidney Allograft Tolerance Across MHC Barriers in Cynomolgus Macaques. Transplantation 2017; 101(2): 274-83.
  59. Hotta K., Aoyama A., Oura T. et al. Induced regulatory T cells in allograft tolerance via transient mixed chimerism. JCI Insight 2016; 1(10): e86419.
  60. Oura T., Ko D.S., Boskovic S. et al. Kidney Versus Islet Allograft Survival After Induction of Mixed Chimerism With Combined Donor Bone Marrow Transplantation. Cell Transplant. 2016; 25(7): 1331-41.
  61. Yamada Y., Nadazdin O., Boskovic S. et al. Repeated Injections of IL-2 Break Renal Allograft Tolerance Induced via Mixed Hematopoietic Chimerism in Monkeys. Am. J. Transplant. 2015; 15(12): 3055-66.
  62. Elias N., Cosimi A.B., Kawai T. Clinical trials for induction of renal allograft tolerance. Curr. Opin. Organ Transplant. 2015; 20(4): 406-11.
  63. Tonsho M., Lee S., Aoyama A. et al. Tolerance of Lung Allografts Achieved in Nonhuman Primates via Mixed Hematopoietic Chimerism. Am. J. Transplant. 2015; 15(8): 2231-9.
  64. Nikoueinejad H., Sharif M.R., Amirzargar A. et al. Regulatory T Cells as a Therapeutic Tool to Induce Solid-Organ Transplant Tolerance: Current Clinical Experiences. Experimental and Clinical Transplantation 2013; 11(5): 379-87.
  65. Hutchinson J.A., Geissler E.K. Now or never? The case for cell-based immunosuppression in kidney transplantation. Kidney Int. 2015; 87(6): 1116-24.
  66. Ezzelarab M.B., Lu L., Guo H. et al. Eomesodermin(lo) CTLA4(hi) Alloreactive CD8+ Memory T Cells Are Associated With Prolonged Renal Transplant Survival Induced by Regulatory Dendritic Cell Infusion in CTLA4 Immunoglobulin-Treated Nonhuman Primates. Transplantation 2016; 100(1): 91-102.
  67. Hall B.M. CD4 + CD25 + T regulatory cells in transplantation tolerance; 25 years on. Transplantation 2016; 100(12): 2533-47.
  68. Naranjo-Gomez M., Raich-Regue D., Onate C. et al. Comparative study of clinical grade human tolerogenic dendritic cells. J. Transl. Med. 2011; 9: 89.
  69. Torres-Aguilar H., Aguilar-Ruiz S.R., Gonzalez-Pérez G. et al. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J. Immunol. 2010; 184(4): 1765-75.
  70. Steinman R., Hawiger D., Nussenzweig M. Tolerogenic dendritic cells. Ann. Rev. Immunol. 2003; 21: 685-711.
  71. Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/ macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994; 179(4): 1109-18.
  72. Kumar S., Wang J., Thomson A.W. et al. Hepatic stellate cells increase the immunosuppressive function of natural Foxp3+ regulatory T cells via IDO-induced AhR activation. J. Leukocyte Biology 2017; 101(2): 429-38.
  73. Zheng X., Suzuki M., Ichim T. et al. Treatment of autoimmune arthritis using RNA interference-modulated dendritic cells. J. Immunol. 2010; 184(11): 6457-64.
  74. Henry E., Desmet C., Garzé V. et al. Dendritic cells genetically engineered to express IL-10 induce long-lasting antigen-specific tolerance in experimental asthma. J. Immunol. 2008; 181(10): 7230-42.
  75. Morita Y., Yang J., Gupta R. et al. Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. JCI Insight 2001; 107(10): 1275-84.
  76. Sochorova K., Budinsky V., Rozkova D. et al. Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells. Clin. Immunol. 2009; 133(1): 69-77.
  77. Harry R., Anderson A., Isaacs J. et al. Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann. Rheum. Dis. 2010; 69(11): 2042-50.
  78. Maggi J., Schinnerling K., Pesce B. et al. Dexamethasone and Monophosphoryl Lipid A-Modulated Dendritic Cells Promote Antigen-Specific Tolerogenic Properties on Naive and Memory CD4 + T Cells. Front. Immunol. 2016; 7: 359.
  79. Lutz M.B., Suri R.M., Niimi M. et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur. J. Immunol. 2000; 30: 1813-22.
  80. Adikari S., Pettersson A., Soderstrom M. et al. Interleukin-10-modulated immature dendritic cells control the proinflammatory environment in multiple sclerosis. Scand. J. Immunol. 2004; 59(6): 600-6.
  81. Guo H., Lu L., Wang R. et al. Impact of human mutant TGFβ1/ Fc protein on memory and regulatory T Cell homeostasis following lymphodepletion in nonhuman primates. Am. J. Transplant. 2016; 16(10): 2994-3006.
  82. Giannoukakis N., Phillips B., Finegold D. et al. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 2011; 34(9): 2026-32.
  83. Benham H., Nel H., Law S. et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci. Transl. Med. 2015; 7(290): 290ra87.
  84. Bell G.M., Anderson A.E., Diboll J. et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann. Rheum. Dis. 2017; 76(1): 227-34.
  85. Vassalli G. Dendritic cell-based approaches for therapeutic immune regulation in solid-organ transplantation. J. Transplant. 2013; 2013: 761429.
  86. Lord P., Spiering R., Aguillon J.C.et al. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. Peer J. 2016; 4: e2300.
  87. Thomson A.W., Zahorchak A.F., Ezzelarab M.B. et al. Prospective clinical testing of regulatory dendritic cells in organ transplantation. Front. Immunol. 2016; 7: 15.
  88. Zahorchak A.F., Ezzelarab M.B., Lu L. et al. In vivo mobilization and functional characterization of nonhuman primate monocytic myeloid-derived suppressor cells. Am. J. Transplant. 2016; 16(2): 661-71.
  89. Chesneau M., Michel L., Degauque N. et al. Regulatory B cells and tolerance in transplantation: from animal models to human. Front. Immunol. 2013; 4: 497.
  90. Valujskikh A.N. B cells regulate antidonor T-cell reactivity in transplantation. Kidney Int. 2015; 88(3): 444-6.
  91. Zarkhin V., Kambham N., Li L. et al. Characterization of intra-graft B cells during renal allograft rejection. Kidney Int. 2008; 74(5): 664-73.
  92. Tse G.H., Johnston C.J., Kluth D. et al. Intrarenal B cell cytokines promote transplant fibrosis and tubular atrophy. Am. J. Transplant. 2015; 15(12): 3067-80.
  93. Crespo M., Heidt S., Redondo D. et al. Monitoring B cell subsets and alloreactivity in kidney transplantation. Transplant. Rev. 2015; 29(2): 45-52.
  94. Lücia M., Luque S., Crespo E. et al. Preformed circulating HLA-specific memory B cells predict high risk of humoral rejection in kidney transplantation. Kidney Int. 2015; 88(4): 874-87.
  95. Yoshikawa M., Kitamura K., Ishimura T. et al. A suspected case of plasma cell-rich acute renal transplant rejection associated with de novo donor-specific antibody. Nephrology (Carlton) 2015; 20 Suppl 2: 66-9.
  96. San Segundo D., Rodrigo E., Kislikova M. et al. Frequencies of circulating B-cell subpopulations before kidney transplantation identify patients at risk of acute rejection. Transplant. Proc. 2015; 47(1): 54-6.
  97. Clatworthy M.R. Targeting B cells and antibody in transplantation. Am. J. Transplantation 2011; 11: 1359-67.
  98. Kim J.I., Rothstein D.M., Markmann J.F. Role of B cells in tolerance induction. Curr. Opin. Organ Transplant. 2015; 20(4): 369-75.
  99. Chesneau M., Michel L., Dugast E. et al. Tolerant Kidney Transplant patients produce B cells with regulatory properties. J. Am. Soc. Nephrol. 2015; 26(10): 2588-98.
  100. Shabir S., Girdlestone J., Briggs D. et al. Transitional B lymphocytes are associated with protection from kidney allograft rejection: a prospective study. Am. J. Transplant. 2015; 15(5): 1384-91.
  101. Le Texier L., Thebault P., Lavault A. et al. Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am. J. Transplant. 2011; 11(3): 429-38.
  102. Newell K.A., Asare A., Sanz I. et al.Longitudinal studies of a B cell-derived signature of tolerance in renal transplant recipients. Am. J. Transplant. 2015; 15(11): 2908-20.
  103. Tebbe B., Wilde B., Ye Z. et al. Renal transplant recipients treated with calcineurin-inhibitors lack circulating immature transitional CD19 + CD24hiCD38hi regulatory B-Lymphocytes. PLoS One 2016; 11(4): e0153170.
  104. Nouël A., Ségalen I., Jamin C. et al. B cells display an abnormal distribution and an impaired suppressive function in patients with chronic antibody-mediated rejection. Kidney Int. 2014; 85(3): 590-9.
  105. Svachova V., Sekerkova A., Hruba P. et al. Dynamic changes of B-cell compartments in kidney transplantation: lack of transitional B cells is associated with allograft rejection. Transpl. Int. 2016; 29(5): 540-8.
  106. Nouë A., Simon Q., Jamin C. et al. Regulatory B cells: an exciting target for future therapeutics in transplantation. Front. Immunol. 2014; 5: 11.
  107. Hoogen M.W., Kamburova E.G., Baas M.C. et al. Rituximab as induction therapy after renal transplantation: a randomized, double-blind, placebo-controlled study of efficacy and safety. Am. J. Transplant. 2015; 15(2): 407-16.
  108. Macklin P.S., Morris P.J., Knight S.R. A systematic review of the use of Rituximab as induction therapy in renal transplantation. Transplant. Rev. 2015; 29(2): 103-8.
  109. Touzot M., Couvrat-Desvergnes G., Gastagnet S. et al. Differential modulation of donor-specific antibodies after B-cell depleting therapies to cure chronic antibody mediated rejection. Transplantation 2015; 99(1): 63-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies