Muscarinic regulation of calcium transient and synaptic transmission in frog neuromuscular junction



如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In frog neuromuscular junction, muscarine, exogeneous acetylcholine and acetylcholinesterase inhibitor proserine reduced the intensity of calcium-sensitive dye fluorescence (calcium transient) at low frequency of nerve stimulation, suggesting that calcium ions entry into nerve ending was decreased. M2 muscarinic receptor blocker methoctramine prevented the action of muscarine. The amplitude of endplate currents was reduced in presence of muscarine at low frequency nerve stimulation, and atropine abolished this effect. Amplitudes of endplate currents evoked by high frequency stimulation were enhanced in presence of methoctramine, and synaptic depression was less pronounced, probably due to elevated calcium concentration in nerve ending. Thus, activation of presynaptic muscarinic receptors predominantly of M2 subtype reduces the intensity of quantal acetylcholine release in frog neuromuscular synapses that may be associated with decreased level of calcium ions in the nerve ending to provide the modulation of postsynaptic currents amplitude at high frequency firing.

全文:

受限制的访问

作者简介

D. Samigullin

Kazan Institute of Biochemistry and Biophysics of Russian Academy of Sciences; Kazan State Medical University; Kazan Federal (Volga region) University

E. Khaziev

Kazan Institute of Biochemistry and Biophysics of Russian Academy of Sciences; Kazan State Medical University; Kazan Federal (Volga region) University

I. Kovyazina

Kazan Institute of Biochemistry and Biophysics of Russian Academy of Sciences; Kazan State Medical University; Kazan Federal (Volga region) University

E. Bukharaeva

Kazan Institute of Biochemistry and Biophysics of Russian Academy of Sciences; Kazan State Medical University; Kazan Federal (Volga region) University

E. Nikolsky

Kazan Institute of Biochemistry and Biophysics of Russian Academy of Sciences; Kazan State Medical University; Kazan Federal (Volga region) University

参考

  1. Никольский Е.Е. Бухараева Э.А., Самигуллин Д.В. и др. Особенности временного хода вызванной секреции квантов медиатора в разных отделах двигательного нервного окончания лягушки. Росс. физиол. журн. им. И.М. Сеченова 2000; 86(9): 1195-209.
  2. Никольский Е.Е., Гиниатуллин Р.А. Прекращение пресинаптического действия карбахолина тубокурарином. Бюлл. Эксп. Биол. Мед. 1979; 2: 171-64.
  3. Dodge F., Rahamimoff R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 1967; 193(2): 419-32.
  4. Wessler I. Control of transmitter release from the motor nerve by presynaptic nicotinic and muscarinic autoreceptors. Trends Pharmacol. Sci. 1989; 10 (3): 110-14.
  5. Katz B., Miledi R. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B. Biol. Sci. 1965; 161: 483-95.
  6. Magazanik L., Minenko M. Polymodal distribution of synaptic delays in the frog neuro-muscular junction. Neurophysiology 1986; 18: 748-63.
  7. Minenko M., Magazanik L. Phenomena of asynchronous evoked transmitter release at the neuro-muscular junction of the frog. Neurophysiology 1986; 18: 346-54.
  8. Nikolsky E., Vyskocil F., Bukharaeva E. et al. Cholinergic regulation of the evoked quantal release at frog neuromuscular junction. J. Physiol. 2004; 560(1): 77-88.
  9. Хазиев Э.Ф., Фатихов Н.Ф., Самигуллин Д.В. и др. Снижение входа кальция в моторное нервное окончание при активации пресинаптических холинорецепторов. Доклады академии наук 2012; 446(5): 590-3.
  10. Borst J., Sakmann B., Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J. Physiol. 1998; 506(1): 143-57.
  11. Peng Y., Zucker R. Release of LHRH is linearly related to the time integral of presynaptic Ca2+ elevation above a threshold level in bullfrog sympathetic ganglia. Neuron 1993; 10 (3): 465-73.
  12. Wu L. G., Betz W. J. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 1996; 17 (4): 769-79.
  13. Suzuki, Osanai M., Murase M. et al. Ca2+ dynamics at the frog motor nerve terminal. Eur. J. Phisiol. 2000; 440 (3): 351-65.
  14. Borst J., Sakmann B. Calcium influx and transmitter release in a fast CNS synapse. Nature 1996; 383(6599): 431-34.
  15. Fukuda, K., Kubo, T., Akiba, I. et al. Molecular distinction between muscarinic acetylcholine receptor subtypes. Nature 1987; 327: 623-25.
  16. Tomas J., Santafe M. M., Garcia N. et al. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse. J. Neurosci. Res. 2014; 92 (5): 543-54.
  17. Slutsky I., Silman I., Parnas I. et al. Presynaptic M2 Muscarinic receptors are involved in controlling the kinetics of Ach release at the frog neuromuscular junction. J. Physiol. 2001; 536: 717-25.
  18. Slutsky I., Parnas H., Parnas I. Presynaptic effects of muscarine on Ach release at the frog neuromuscular junction. J. Physiol. 1999; 514: 769-182.
  19. Abbs E.T., Joseph D.N. The effects of atropine and oxotremorine on acetylcholine release in rat phrenic nerve-diaphragm preparations. Br. J. Pharmacol. 1981; 73: 481-3.
  20. Arenson M.S. Muscarinic inhibition of quantal transmitter release from the magnesium-paralysed frog sartorius muscle. Neuroscience 1989; 30(3): 827-83.
  21. Ganguly D.K. Effects of oxotremorine demonstrate presynaptic muscarinic and dopaminergic receptors on motor nerve terminals. Nature 1979; 278: 645-6.
  22. Wessler I. et al. Muscarine receptors on the rat phrenic nerve, evidence for positive and negative muscarinic feedback mechanisms. Naunyn Schmiedeberg's Arch Pharmacol. 1987; 466: 605-12.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2014



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 
##common.cookie##