Биогенез и секреторные пути химазы тучных клеток: структурно-функциональные аспекты

  • Авторы: Атякшин Д.А1, Клочкова С.В2,3, Шишкина В.В4, Никитюк Д.Б5,6, Алексеева Н.Т7, Костин А.А2
  • Учреждения:
    1. Научно-образовательный ресурсный Центр «Инновационные технологии иммунофенотипирования, цифрового пространственного профилирования и ультраструктурного анализа» Российского университета дружбы народов
    2. Российский университет дружбы народов
    3. Московский научно-практический центр медицинской реабилитации, восстановительной и спортивной медицины
    4. Научно-исследовательский институт экспериментальной биологии и медицины Воронежского государственного медицинского университета им. Н.Н. Бурденко
    5. Федеральный исследовательский центр питания, биотехнологии и безопасности пищи
    6. Первый Московский государственный университет им. И.М. Сеченова
    7. Воронежский государственный медицинский университет им. Н.Н. Бурденко
  • Выпуск: Том 16, № 3 (2021)
  • Страницы: 33-43
  • Раздел: Статьи
  • Статья получена: 16.01.2023
  • Статья опубликована: 15.09.2021
  • URL: https://genescells.ru/2313-1829/article/view/121959
  • DOI: https://doi.org/10.23868/202110004
  • ID: 121959


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Химаза - специфическая протеаза тучных клеток, входящая в число преформированных компонентов секретома. Биогенез химазы начинается с процессов транскрипции в ядре, продолжаясь в цитоплазме тучных клеток на рибосомах и в цистернах эндоплазматической сети. Поступая в комплекс Гольджи, молекулы прохимазы подвергаются посттрансляционным модификациям, которые продолжаются в отшнуровывающихся от его транс-отдела везикулах. В ходе дальнейшего процессинга при созревании гранул химаза становится активным ферментом и подвергается интрагранулярной аккумуляции с характерными топографическими закономерностями, определяя особенности цитологического и ультраструктурного фенотипа тучных клеток. различные секреторные механизмы выведения химазы во внеклеточный матрикс приводят к появлению разнообразных биологических эффектов, обусловленных высокой селективностью протеазы к молекулярным мишеням клеточного и экстрацеллюлярного компонентов специфического тканевого микроокружения. Поскольку химаза является важным ферментом в формировании состояния интегративно-буферной метаболической среды соединительной ткани, ее целесообразно рассматривать в качестве диагностического маркера и вероятной фармакологической мишени при терапии ряда патологических состояний. Известна вовлеченность химазы в механизмы развития воспаления и аллергии, ангиогенеза и онкогенеза, ремоделирования внеклеточного матрикса соединительной ткани и изменения гистоархитектоники органов. технология иммуногистохимического окрашивания с помощью хромогенной или флуоресцентной детекции позволяет объективно определять количество химаза-позитивных тучных клеток во внутриорганной популяции, механизмы биогенеза и процессинга, цито- и гистотопографические характеристики с визуализацией секреторных путей и, следовательно, расширяет интерпретацию полученных данных при изучении адаптивных и патологических состояний внутренних органов, важных не только для диагностики, но и для оценки проводимой терапии.

Полный текст

Доступ закрыт

Об авторах

Д. А Атякшин

Научно-образовательный ресурсный Центр «Инновационные технологии иммунофенотипирования, цифрового пространственного профилирования и ультраструктурного анализа» Российского университета дружбы народов

С. В Клочкова

Российский университет дружбы народов; Московский научно-практический центр медицинской реабилитации, восстановительной и спортивной медицины

В. В Шишкина

Научно-исследовательский институт экспериментальной биологии и медицины Воронежского государственного медицинского университета им. Н.Н. Бурденко

Д. Б Никитюк

Федеральный исследовательский центр питания, биотехнологии и безопасности пищи; Первый Московский государственный университет им. И.М. Сеченова

Н. Т Алексеева

Воронежский государственный медицинский университет им. Н.Н. Бурденко

А. А Костин

Российский университет дружбы народов

Список литературы

  1. Бухвалов И.Б., Бекер В., Маркус Т. Пауль Эрлих и его вклад в становление и развитие гистохимии: посвящение к столетию со дня смерти. Журнал анатомии и гистопатологии 2016; 5(3): 98-104.
  2. Федорова Е.А., Суфиева Д.А., Григорьев И.П. и соавт. Тучные клетки эпифиза человека. Успехи геронтологии 2018; 31(4): 4849.
  3. Ehrlich P. Beitrage fur Theorie und Praxis der histologischen Farbung. Thesis, University of Leipzig, Leipzig; 1878.
  4. Redegeld F.A., Yu Y., Kumari S. et al. Non-IgE mediated mast cell activation. Immunol. Rev. 2018; 282(1): 87-113.
  5. Robida P.A., Puzzovio P.G., Pahima H. et al. Human eosinophils and mast cells: Birds of a feather flock together. Immunol. Rev. 2018; 282(1): 151-67.
  6. Wernersson S., Pejler G. Mast cell secretory granules: armed for battle. Nat. Rev. Immunol. 2014; 14(7): 478-94.
  7. Crivellato E., Travan L., Ribatti D. The Phylogenetic profile of mast cells. In: hughes M., McNagny K., editors. Mast Cells. Methods in Molecular Biology (Methods and Protocols). 2nd ed. New York: Humana Press; 2015. p. 11-27.
  8. Ribatti D. The development of human mast cells. An historical reappraisal. Exp. Cell Res. 2016; 342: 210-5.
  9. Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J. Leukoc. Biol. 1997; 61(3): 233-5.
  10. Гусельникова В.В., Пронина А.П., Назаров П.Г. и др. Происхождение тучных клеток: современное состояние проблемы. В: Данилов Р.К., Костюкевич C.B., Одинцова И.А., редакторы. Вопросы морфологии XXI века: сборник научных трудов Всероссийской конференции, посвященной 80-летию со дня рождения профессора Алексея Андреевича Клишова. Выпуск 2. СПб: ДЕАН; 2010. с. 10815.
  11. Федорова Е.А., Коржевский Д.Э., Бекоева С.А. и др. Гистохимическая и иммуногистохимическая идентификация тучных клеток миокарда человека. Морфология 2015; 2: 80-6.
  12. Galli S.J., Tsai M., Marichal T. et al. Approaches for analyzing the roles of mast cells and their proteases in vivo. In: Alt F.W., editor. Advances in Immunology. Academic Press; 2015. p. 45-127.
  13. Mukai K., Mindy Tsai M., Saito H. et al. Mast cells as sources of cytokines, chemokines, and growth factors. Immunological Reviews 2018; 282: 121-50.
  14. Соболева М.Ю., Никитюк Д.Б., Алексеева Н.Т. и др. Гистотопография тучных клеток кожи при моделировании ожога в условиях применения различных методов регионарного воздействия. Гены и Клетки 2021; 16(1): 69-74.
  15. Pejler G., Abrink M., Ringvall M. et al. Mast cell proteases. In: Pejler G., Abrink M., Ringvall M. et al., editors. Advances in Immunology. Elsevier; 2007. p. 167-255.
  16. Pejler G., Abrink M., Wernersson S. Serglycin proteoglycan: regulating the storage and activities of hematopoietic proteases. Biofactors 2009; 35(1): 61-8.
  17. Ammendola M., Sacco R., Sammarco G. et al. Mast cell-targeted strategies in cancer therapy. Transfusion Medicine and Hemotherapy 2016; 43(2): 109-13.
  18. Caughey G.H. Mast cell proteases as pharmacological targets. Eur. J. Pharmacol. 2016; 778: 44-55.
  19. Dell’Italia L.J., Collawn J.F., Ferrario C.M. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ. Res. 2018; 122: 319-36.
  20. Shukla S.A., Veerappan R., Whittimore J.S. et al. Mast cell ultrastructure and staining in tissue. Methods Mol. Biol. 2006; 315: 63-76.
  21. Singh J., Shah R., Singh D. Targeting mast cells: Uncovering prolific therapeutic role in myriad diseases. International immunopharmacology 2016; 40: 362-84.
  22. Caughey G.H. Mast cell tryptases and chymases in inflammation and host defense. Immunol. Rev. 2007; 217: 141-54.
  23. Pejler G., Ronnberg E., Waern I. et al. Mast cell proteases: multifaceted regulators of inflammatory disease. Blood 2010; 115(24): 4981-90.
  24. Schwartz L.B., Irani A.M., Roller K. et al. Quantitation of histamine, tryptase, and chymase in dispersed human T. and TC mast cells. J. Immunol. 1987; 138(8): 2611-5.
  25. Crivellato E., Beltrami C.A., Mallardi F. et al. The mast cell: an active participant or an innocent bystander? Histol. Histopathol. 2004; 19(1): 259-70.
  26. Caughey G.H. Mast cell proteases as protective and inflammatory mediators. Adv. Exp. Med. Biol. 2011; 716: 212-34.
  27. Souza Junior D.A., Santana A.C., da Silva E.Z. et al. The role of mast cell specific chymases and tryptases in tumor angiogenesis. BioMed Res. Int. 2015; 2015: 142359.
  28. Dvorak A.M. Ultrastructure of human mast cells. Int. Arch. Allergy Immunol. 2002; 127(2): 100-5.
  29. Hammel I., Lagunoff D., Galli S.J. Regulation of secretory granule size by the precise generation and fusion of unit granules. J. Cell. Mol. Med. 2010; 14: 1904-16.
  30. Vukman K.V., Forsonits A., Oszvald A. et al. Mast cell secretome: Soluble and vesicular components. Semin. Cell Dev. Biol. 2017; 67: 65-73.
  31. Henningsson F., Wolters P., Chapman H.A. et al. Mast cell Cathep-sins C. and S. Control Levels of Carboxypeptidase A and the Chymase, Mouse Mast Cell Protease 5. Biol. Chem. 2003; 384(10): 1527-31.
  32. Wolters P.J., Pham C.T., Muilenburg D.J. et al. Dipeptidyl peptidase I. is essential for activation of mast cell chymases, but not tryptases, in mice. J. Biol. Chem. 2001; 276(21): 18551-6.
  33. Murakami M., Karnik S.S., Husain A. Human prochymase activation. A novel role for heparin in zymogen processing. J. Biol. Chem. 1995; 270(5): 2218-23.
  34. Mulloy B., Lever R., Page C.P. Mast cell glycosaminoglycans. Glyco-conjugate journal 2017; 34(3): 351-61.
  35. Buchwalow I.B., Bocker W. Immunohistochemistry: Basics and Methods. 1st ed. London, New York: Springer; 2010.
  36. Atiakshin D., Buchwalow I., Samoilova V. et al. Tryptase as a polyfunctional component of mast cells. Histochemistry and Cell Biology 2018; 149(5): 461-77.
  37. Lindstedt L., Lee M., Kovanen P.T. Chymase bound to heparin is resistant to its natural inhibitors and capable of proteolyzing high density lipoproteins in aortic intimal fluid. Atherosclerosis 2001; 155: 87-97.
  38. Metcalfe D.D., Baram D., Mekori Y.A. Mast cells. Physiol. Rev. 1997; 77: 1033-79.
  39. Arvan P., Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochemical Journal 1998; 332: 593-610.
  40. Blank U., Madera-Salcedo I.K., Danelli L. et al. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Frontiers in Immunology 2014; 5: аrticle 453.
  41. De Matteis M.A., Luini A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 2008; 9: 273.
  42. Hammel I., Lagunoff D., Kruger P.G. Studies on the growth of mast cells in rats. Changes in granule size between 1 and 6 months. Lab. Invest. 1988; 59: 549-54.
  43. Henningsson F., Hergeth S., Cortelius R. et al. A role for serglycin proteoglycan in granular retention and processing of mast cell secretory granule components. FEBS J. 2006; 273: 4901-12.
  44. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu. Rev. Cell Biol. 1989; 5: 483-525.
  45. Kolset S.O., Tveit H. Serglycin - structure and biology. Cell. Mol. Life Sci. 2008; 65(7-8): 1073-85.
  46. Ronnberg E., Melo F.R., Pejler G. Mast cell proteoglycans. J. Histochem. Cytochem. 2012; 60(12): 950-62.
  47. Abrink M., Grujic M., Pejler G. Serglycin is essential for maturation of mast cell secretory granule. The Journal of Biological Chemistry 2004; 279(39): 897-905.
  48. Duelli A., Ronnberg E., Waern I. et al. Mast cell differentiation and activation is closely linked to expression of genes coding for the serglycin proteoglycan core protein and a distinct set of chondroitin sulfate and heparin sulfotransferases. J. Immunol. 2009; 183(11): 73-83.
  49. Elieh Ali Komi D., Wohrl S., Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clinical Reviews in Allergy & Immunology 2020; 58: 342-65.
  50. Moon T.C., Befus A.D., Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front. Immunol. 2014; 14(5): 569.
  51. Schmidt O., Teis D. The ESCRT machinery. Curr. Biol. 2012; 22(4): 16-20.
  52. Blair E.A., Castle A.M., Castle J.D. Proteoglycan sulfation and storage parallels storage of basic secretory proteins in exocrine cells. American Journal of Physiology 1991; 261: 897-905.
  53. Atiakshin D., Samoilova V., Buchwalow I. et al. Characterization of mast cell populations using different methods for their identification. Histochemistry and Cell Biology 2017; 147(6): 683-94.
  54. Kormelink T.G., Arkesteijn G.J., van de Lest C.H. et al. Mast Cell Degranulation Is Accompanied by the Release of a Selective Subset of Extracellular Vesicles That Contain Mast Cell-Specific Proteases. J. Immunol. 2016; 197: 3382-92.
  55. Lecce M., Molfetta R., Milito N.D. et al. FceRI signaling in the Modulation of allergic response: role of mast cell-derived exosomes. Int. J. Mol. Sci. 2020; 1(15): 5464.
  56. Blank U. The mechanisms of exocytosis in mast cells. Advances in experimental medicine and biology 2011; 716: 107-22.
  57. Raposo G., Tenza D., Mecheri S. et al. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Molecular Biology of the Cell 1997; 8(12): 2631-45.
  58. Azouz N.P., Zur N., Efergan A. et al. Rab5 is a novel regulator of mast cell secretory granules: impact on size, cargo, and exocytosis. Journal Immunology 2014; 192: 43-53.
  59. Tiwari N., Wang C.C., Brochetta C. et al. VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways. Blood 2008; 111(7): 3665-74.
  60. Grimberg E., Peng Z., Hammel I. et al. Synaptotagmin III is a critical factor for the formation of the perinuclear endocytic recycling compartment and determination of secretory granules size. J. Cell Sci. 2003; 116(1): 145-54.
  61. Dvorak A.M., Morgan E.S. Ribosomes and secretory granules in human mast cells: Close associations demonstrated by staining with a chelating agent. Immunol. Rev. 2001; 179: 94-101.
  62. Dvorak A.M., Morgan E.S., Lichtenstein L.M. et al. RNA is closely associated with human mast cell secretory granules, suggesting a role(s) for granules in synthetic processes. J. Histochem. Cytochem. 2000; 48: 1-12.
  63. Dvorak A.M. Ultrastructural studies of human basophils and mast cells. J. Histochem. Cytochem. 2005; 53(9): 43-70.
  64. Nakazawa S., Sakanaka M., Furuta K. et al. Histamine synthesis is required for granule maturation in murine mast cells. Eur. J. Immunol. 2014; 44(1): 204-14.
  65. Butterfield J.H., Weiler D., Peterson E.A. et al. Sequestration of eosinophil major basic protein in human mast cells. Lab. Invest. 1990; 1(62): 77-86.
  66. Ohtsu H., Kuramasu A., Tanaka S. et al. Plasma extravasation induced by dietary supplemented histamine in histamine-free mice. Eur. J. Immunol. 2002; 32(6): 1698-708.
  67. Olszewski M.B., Groot A.J., Dastych J. et al. TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. J. Immunol. 2007; 178 (9): 5701-9.
  68. Rickard A., Lagunoff D. Eosinophil peroxidase accounts for most if not all of the peroxidase activity associated with isolated rat peritoneal mast cells. Int. Arch. Allergy Immunol. 1994; 103(4): 365-9.
  69. Rundquist I., Allenmark S., Enerback L. Uptake and turnover of dopamine in rat mast cells studied by cytofluorometry and high performance liquid chromatography. Histochem. J. 1982; 14: 429-43.
  70. Trivedi N.N., Caughey G.H. Mast cell peptidases: chameleons of innate immunity and host defense. Am.J. Respir. Cell Mol. Biol. 2010; 42(3): 257-67.
  71. Caughey G.H. New developments in the genetics and activation of mast cell proteases. Mol. Immunol. 2001; 38: 1353-7.
  72. Атякшин Д.А., Бухвалов И.Б., Тиманн М. Протеазы тучных клеток в формировании специфического тканевого микроокружения: патогенетические и диагностические аспекты. Терапия 2018; 6(24): 128-40.
  73. Pejler G., Knight S.D., Henningsson F. et al. Novel insights into the biological function of mast cell carboxypeptidase A. Trends Immunol. 2009; 30(8): 401-8.
  74. Goldstein S.M., Leong J., Schwartz L.B. et al. Protease composition of exocytosed human skin mast cell protease-proteoglycan complexes. Tryptase resides in a complex distinct from chymase and carboxypeptidase. J. Immunol. 1992; 148: 2475-82.
  75. Harvima I.T., Nilsson G. Mast cells as regulators of skin inflammation and immunity. Acta Derm. Venereol. 2011; 91(6): 44-50.
  76. Whitaker-Menezes D., Schechter N.M., Murphy G.F. Serine Protein-ases are regionally segregatedwithin mast cell granules. Lab. Invest. 1995; 72: 34-41.
  77. Craig S.S., Schechter N.M., Schwartz L.B. Ultrastructural analysis of maturing human T. and TC mast cells in situ. Lab. Invest. 1989; 60(1): 147-57.
  78. Craig S.S., Schechter N.M., Schwartz L.B. Ultrastructural analysis of human T. and TC mast cells identified by immunoelectron microscopy. Lab. Invest. 1988; 58(6): 682-91.
  79. Weidner N., Austen K.F. Ultrastructural and immunohistochemical characterization of normal mast cells at multiple body sites. J. Invest. Dermatol. 1991; 96(3): 26-30.
  80. Быков В.Л. Секреторные механизмы и секреторные продукты тучных клеток. Морфология 1999; 115(2): 64-72.
  81. Dvorak A.M. Ultrastructural analysis of human mast cells and basophils. Chem. Immunol. 1995; 61: 1-33.
  82. De Boer P., Hoogenboom J.P., Giepmans B.N. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 2015; 12: 503-13.
  83. Dvorak A.M., McLeod R.S., Onderdonk A. et al. Ultrastructural evidence for piecemeal and anaphylactic degranulation of human gut mucosal mast cells in vivo. Int. Arch. Allergy Immunol. 1992; 99(1): 74-83.
  84. Xu H., Bin N.R., Sugita S. Diverse exocytic pathways for mast cell mediators. Biochem. Soc. Trans. 2018; 46(2): 235-47.
  85. Енькова Е.В., Атякшин Д.А., Гайская о.В. и др. оценка популяции тК децидуальной ткани и статуса витамина D. у женщин с неразвивающейся беременностью в эмбриональном периоде. Вестник новых медицинских технологий 2018; 25(3): 21-7.
  86. Crivellato E., Nico B., Mallardi F. et al. Piecemeal degranulation as a general secretory mechanism? Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003; 274(1): 778-84.
  87. Hugle T. Beyond allergy: the role of mast cells in fibrosis. Swiss Med. Weekly 2014; 144: w13999.
  88. Veerappan A., Thompson M., Savage A.R. et al. Mast cells and exosomes in hyperoxia-induced neonatal lung disease. Am.J. Physiol. Lung Cell. Mol. Physiol. 2016; 310(11): 1218-32.
  89. Kunder C.A., St John A.L., Li G. et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 2009; 206(11): 2455-67.
  90. Puri N., Roche P.A. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. PNAS USA 2008; 150(7): 2580-5.
  91. Kosanovic D., Luitel H., Dahal B.K. et al. Chymase: a multifunctional player in pulmonary hypertension associated with lung fibrosis. Eur. Respir. J. 2015; 46(4): 1084-94.
  92. He A., Shi G.P. Mast Cell Chymase and tryptase as targets for cardiovascular and metabolic diseases. Curr. Pharm. Des. 2013; 19(6): 1114-25.
  93. Suttle M.M., Harvima I.T. Mast cell chymase in experimentally induced psoriasis. Journal of Dermatology 2016; 43: 693-6.
  94. Kondo K., Muramatsu M., Okamoto Y. et al. Expression of chymase-positive cells in gastric cancer and its correlation with the angiogenesis. J. Surg. Oncol. 2006; 93: 36-42.
  95. Nagata M., Shijubo N., Walls A.F. et al. Chymase-positive mast cells in small sized adenocarcinoma of the lung. Virchows Arch. 2003; 443: 565-73.
  96. Waern I., Lundequist A., Pejler G. et al. Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dust-mite induced airway inflammation. Mucosal Immunology 2013; 6(5): 911-20.
  97. Bot I., Shi G.P., Kovanen P.T. Mast cells as effectors in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 2015; 35(2): 265-71.
  98. Атякшин Д.А. Гистохимические подходы к оценке участия тучных клеток в регуляции состояния межклеточного матрикса соединительной ткани кожи. Журнал анатомии и гистопатологии 2018; 7(3): 100-12.
  99. Atiakshin D., Buchwalow I., Tiemann M. Mast cells and collagen fibrillogenesis. Histochemistry and Cell Biology 2020; 154(1): 21-40.
  100. Okamoto Y., Takai S., Miyazaki M. Significance of chymase inhibition for prevention of adhesion formation. Eur. J. Pharmacol. 2004; 484: 357-9.
  101. Dong X., Geng Z., Zhao Y. et al. Involvement of mast cell chymase in burn wound healing in hamsters. Experimental and therapeutic medicine 2013; 5: 643-7.
  102. Magnusson S.E., Pejler G., Kleinau S. et al. Mast cell chymase contributes to the antibody response and the severity of autoimmune arthritis. FASEB J. 2009; l(23): 875-82.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2021



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах