Транспозонная гипотеза канцерогенеза



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Представлена гипотеза, согласно которой ключевыми драйверами канцерогенеза являются транспозоны, вызывающие геномную нестабильность, экспрессию онкогенов и инактивацию онкосупрессорных генов. Экспрессия ретроэлементов находится под негативным регуляторным контролем белков р53, RB1, VHL, BRCA1, ATM. Предполагают, что большинство онкосупрессоров способны вызывать сайленсинг транспозонов, так как в их генах содержатся мобильные элементы, вызывающие рекомбинацию при их активации, и горячие точки инсерционного мутагенеза. Подавление экспрессии транспозонов онкосупрессорами в качестве адаптивного процесса к нормальному развитию организма, направленное на устранение возможности геномной нестабильности, необходимо для обеспечения стабильности этих генов. Причиной развития новообразований при наследственных опухолевых синдромах может стать обусловленная врожденным дефицитом онкосупрессора патологическая активация транспозонов, которые вызывают мутации второго аллеля и других онкосупрессорных генов. таким образом, при развитии опухолей формируется «порочный круг»: мобильные элементы инактивируют онкосупрессоры, необходимые для подавления экспрессии транспозонов, что вызывает активацию большего количества мобильных элементов и прогрессирующую геномную нестабильность, а вновь активированные транспозоны вызывают мутации в других онкосупрессорных генах. Идентичные механизмы вероятны для спорадического канцерогенеза: активированный под влиянием стрессовых факторов и соматических мутаций транспозон перемещается в новые локусы, вызывает характерные для неоплазм комплексные геномные перестройки, инактивирует онкосупрессоры, содержащие горячие точки инсерционного мутагенеза, и активирует онкогены, поскольку их регуляторные области и интроны содержат в своем составе транспозоны. расположенные в интронах транспозоны способствуют транскрипции химерных молекул, которые обладают выраженной онкогенной активностью. Кроме того, мобильные элементы являются источниками онкогенных микрорНК и длинных некодирующих рНК. одни и те же микрорНК влияют на развитие неоплазм и старение организма, что подтверждает гипотезу о роли транспозонов в канцерогенезе, так как с возрастом происходит активация транспозонов, а старение ассоциировано с высоким риском развития злокачественных опухолей.

Полный текст

Доступ закрыт

Об авторах

Р. Н Мустафин

Башкирский государственный медицинский университет

Email: ruji79@mail.ru

Список литературы

  1. De Koning A.P., Gu W., Castoe T.A. et al. Repetitive elements may comprise over two-thirds of the human genome. PLOS Genetics 2011; 7(12): e1002384.
  2. Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech. Ageing Dev. 2018; 174: 30-46.
  3. Nevalainen T., Autio A., Mishra B.H. et al. Aging-associated pattern in the expression of human endogenous retroviruses. PLoS One 2018; 13(12): e0207407.
  4. Мустафин Р.Н., Хуснутдинова Э.К. Роль транспозонов в эпигенетической регуляции онтогенеза. Онтогенез 2018; 49(2): 69-90. [Mustafin R.N., Khusnutdinova E.K. The role of transposons in epigenetic regulation of ontogenesis.Russian Journal of Developmental Biology 2018; 49(2): 69-90].
  5. De Cecco M., Criscione S.W., Peterson A.L. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 2013; 5(12): 867-83.
  6. Chen H., Zheng X., Xiao D. et al. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell 2016; 15: 542-52.
  7. Wood G.W., Jones B.C., Jiang N. et al. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. PNAS USA 2016; 113(40): 11277-82.
  8. Elsner D., Meusemann K., Korb J. Longevity and transposon defense, the case of termite reproductives. PNAS USA 2018; 115(21): 5504-9.
  9. De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019; 566: 73-8.
  10. Mahmood W., Erichsen L., Ott P. et al. Aging-associated distinctive DNA methylation changes of LINE-1 retrotransposons in pure cell-free DNA from human blood. Sci. Rep. 2020; 10(1): 22127.
  11. Мустафин Р.Н., Хуснутдинова Э.К. Стресс-индуцированная активация транспозонов в экологическом морфогенезе. Вавиловский журнал генетики и селекции 2019; 23(4): 380-9. [Mustafin R.N., Khusnutdinova E.K. The role of transposable elements in the ecological morphogenesis under the influence of stress. Vavilov Journal of Genetics and Breeding 2019; 23(4): 380-9].
  12. Wang T., Zeng J., Lowe C.B. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. PNAS USA 2007; 104(47): 18613-8.
  13. Tiwari B., Jones A.E., Caillet C.J. et al. P53 directly repress human LINE1 transposons. Genes Dev. 2020; 34(21-22): 1439-51.
  14. Cherkasova E., Malinzak E., Rao S. et al. Inactivation of the von Hippel-Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene 2011; 30(47): 4697-706.
  15. Montoya-Durango D.E., Ramos K.S. Retinoblastoma family of proteins and chromatin epigenetics: a repetitive story in a few LINEs. Biomol. Concepts 2011; 2(4): 233-45.
  16. Mita P., Sun X., Fenyo D. et al. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrptransposition in human cells. Nat. Struct. Mol. Biol. 2020; 27(2): 179-91.
  17. Romanish M.T., Cohen C.J., Mager D.L. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin. Cancer Biol. 2010; 20(4): 246-53.
  18. Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 2020; 52: 306-19.
  19. Ribeiro I.P., Carreira I.M., Esteves L. et al. Chromosomal breakpoints in a cohort of head and neck squamous cell carcinoma patients. Genomics 2020; 112: 297-303.
  20. Suzuki J., Yamaguchi K., Kajikawa M. et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 2009; 5: e1000461.
  21. Erwin J.A., Paquola A.C.M., Singer T. et al. L1-Associated Genomic Regions are Deleted in Somatic Cells of the Healthy Human Brain. Nat. Neu-rosci. 2016; 19: 1583-91.
  22. Cortes-Ciriano I., Lee J.J., Xi R. et al.Comprehensive analysis of chromothripsis in 2658 human cancer using whole-genome sequencing. Nat. Genet. 2020; 52: 331-41.
  23. Nazaryan-Petersen L., Bertelsen B., Bak M. et al. Germline chro-mothripsis driven by L1-mediated retrotransposition and Alu/Alu homologous recombination. Hum. Mutat. 2016; 37: 385-95.
  24. Lamprecht B., Walter K., Kreher S. et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 2010; 16(5): 571-9.
  25. Hur K., Cejas P., Feliu J. et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 2014; 63(4): 635-46.
  26. Babaian A., Romanish M.T., Gagnier L. et al. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene 2016; 35(19): 2542-6.
  27. Dabora S.L., Nieto A.A., Franz D. et al. Characterisation of six large deletions in TSC2 identified using long range PCR suggests diverse mechanisms including Alu mediated recombination. J. Med. Genet. 2000; 37(11): 877-83.
  28. Franke G., Bausch B., Hoffmann M.M. et al. Alu-Alu recombination underlies the vast majority of large VHL germline deletions: Molecular characterization and genotype-phenotype correlation in VHL patients. Hum. Mutat. 2009; 30(5): 776-86.
  29. Hitchins M.P., Burn J. Alu in Lynch syndrome: a danger SINE. Cancer Prev. Res. (Phila.) 2011; 4(10): 1527-30.
  30. Wimmer K., Callens T., Wernstedt A. et al. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet. 2011; 7(11): e1002371.
  31. Crivelli L., Bubien V., Jones N. et al. Insertion of Alu elements at a PTEN hotspot in Cowden syndrome. Eur. J. Hum. Genet. 2017; 25(9): 1087-91.
  32. Kapusta A., Kronenberg Z., Lynch V.J. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 2013; 9(4): e1003470.
  33. Kelley D., Rinn J. Transposable elements reveal a stem cell specific class of long noncoding RNAs. Genome Biol. 2012; 13(11): R107.
  34. Honson D.D., Macfarlan T.S. A lncRNA-like Role for LINE1s in Development. Dev. Cell 2018; 46: 132-4.
  35. Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 2014; 21(4): 423-5.
  36. Piriyapongsa J., Marino-Ramirez L., Jordan I.K. Origin and evolution of human microRNAs from transposable elements. Genetics 2007; 176: 1323-37.
  37. Gu T.J., Yi X., Zhao X.W. et al. Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 2009; 10: 563.
  38. Filshtein T.J., Mackenzie C.O., Dale M.D. et al. Orbid: Origin-based identification of microRNA targets. Mobile Genetic Elements 2012; 2: 184-92.
  39. Yuan Z., Sun X., Liu H. et al. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One 2011; 6: e17666.
  40. Tempel S., Pollet N., Tahi F. NcRNAclassifier: a tool for detection and classification of transposable element sequences in RNA hairpins. BMC Bioinformatics 2012; 13: 246-58.
  41. Qin S., Jin P., Zhou X. et al. The Role of transposable elements in the origin and evolution of microRNAs in human. PLoS One 2015; 10: e0131365.
  42. Wei G., Qin S., Li W. et al. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans.Comput. Biol. Bioinform. 2016; 13: 1155-60.
  43. Lee H.E., Huh J.W., Kim H.S. Bioinformatics analysis of evolution and human disease related transposable element-derived microRNAs. Life (Basel) 2020; 10: 95.
  44. Scott E.C., Gardner E.J., Masood A. et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 2016; 26(6): 745-55.
  45. Cajuso T., Sulo P., Tanskanen T. et al. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat.Commun. 2019; 10(1): 4022.
  46. Xia Z., Cochrane D.R., Anglesio M.S. et al. LINE-1 retrotransposon-mediated DNA transductions in endometriosis associated ovarian cancer. Gynecol. Oncol. 2017; 147(3): 642-7.
  47. Crouch J.A., Glasheen B.M., Giunta M.A. et al. The evolution of transposon repeat-induced point mutation in the genome of Colletotri-chum cereale: reconciling sex, recombination and homoplasy in an “asexual” pathogen. Fungal Genet. Biol. 2008; 45(3): 190-206.
  48. Ramos K.S., Montoya-Durango D.E., Teneng I. et al. Epigenetic control of embryonic renal cell differentiation by L1 retrotransposon. Birth Defects Res. A Clin. Mol. Teratol. 2011; 91(8): 693-702.
  49. Garen A. From a retrovirus infection of mice to a long noncoding RNA that induces proto-oncogene transcription and oncogenesis via an epigenetic transcription switch. Signal Transduct. Target Ther. 2016; 1: 16007.
  50. Hsiao M.C., Piotrowski A., Callens T. et al. Decoding NF1 intragenic copy-number variations. Am.J. Hum. Genet. 2015; 97(2): 238-49.
  51. Futreal P.A., Barrett J.C., Wiseman R.W. An Alu polymorphism intragenic to the TP53 gene. Nucleic Acids Res. 1991; 19(24): 6977.
  52. Kamat N., Khidhir M.A., Jaloudi M. et al. High incidence of microsatellite instability and loss of heterozygosity in three loci in breast cancer patients receiving chemotherapy: a prospective study. BMC Cancer 2012; 12: 373.
  53. Coufal N.G., Garcia-Perez J.L., Peng G.E. et al. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. PNaS USA 2011; 108(51): 20382-7.
  54. Shukla R., Upton K.R., Munoz-Lopez M. et al. Endogenous ret-rotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 2013; 153(1): 101-11.
  55. Borun P., De Rosa M., Nedoszytko B. et al. Specific Alu elements involved in a significant percentage of copy number variations of the STK11 gene in patients with Peutz-Jeghers syndrome. Fam. Cancer 2015; 14(3): 455-61.
  56. Rodriguez-Martin C., Cidre F., Fernandez-Teijeiro A. et al. Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and nonca-nonical mRNA splicing of the RB1 gene. J. Hum. Genet. 2016; 61(5): 463-6.
  57. Jang H.S., Shah N.M., Du A.Y. et al. Transposable elements drive widespread expression of oncogenes in human cancer. Nat. Genet. 2019; 51(4): 611-7.
  58. Cervantes-Ayalc A., Esparza-Garrido R.R., Velazquez-Floes M.A. Long Interspersed Nuclear Elements 1 (LINE1): The chimeric transcript L1-MET and its involvement in cancer. Cancer Genet. 2020; 241: 1-11.
  59. Lock F.E., Rebollo R., Miceli-Royer K. et al. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. PNAS USA 2014; 111(34): E3534-43.
  60. Wiesner T., Lee W., Obenauf A.C. et al. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 2015; 526(7573): 453-7.
  61. Scarfo I., Pellegrino E., Mereu E. et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood 2016; 127(2): 221-32.
  62. Weber B., Kimhi S., Howard G. et al. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 2010; 29(43): 5775-84.
  63. Chen T., Meng Z., Gan Y. et al. The viral oncogene Np9 acts as a critical molecular switch for co-activating beta-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia 2013; 27(7): 1469-78.
  64. Fairbanks D.J., Fairbanks A.D., Ogden T.H. et al. NANOGP8: evolution of a human-specific retro-oncogene. G3 (Bethesda) 2012; 2(11): 1447-57.
  65. Barchitta M., Quattrocchi A., Maugeri A. et al. LINE-1 Hypomethyl-ation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 2014; 9(10): e109478.
  66. Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells. Front. Genet. 2019; 10: 645.
  67. Wong N.W., Chen Y., Chen S. et al. OncomiR: and online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics 2018; 34: 713-5.
  68. Ebron J.S., Shankar E., Singh J. et al. MiR-644a Disrupts oncogenic transformation and warburg effect by direct modulation of multiple genes of tumor-promoting pathways. Cancer Res. 2019; 79(8): 1844-56.
  69. Fong L.Y., Taccioli C., Palamarchuk A. et al. Abrogation of esophageal carcinoma development in miR-31 knockout rats. PNAS USA 2020; 117(11): 6075-85.
  70. Yu T., Ma P., Wu D. et al. Functions and mechanisms of microRNA-31 in human cancers. Biomed. Pharmacother. 2018; 108: 1162-9.
  71. Rojas F., Hernandez M.E., Silva M. et al. The oncogenic response to MiR-335 is associated with cell surface expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) Activity. PLoS One 2015; 10(7): e0132026.
  72. Kooistra S.M., Norgaard L.C.R., Lees M.J. et al. A screen identifies the oncogenic micro-RNA miR-378a-5p as a negative regulator of oncogene-induced senescence. PLoS One 2014; 9(3): e91034.
  73. Bhan A., Soleimani M., Mandal S.S. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017; 77(15): 3965-81.
  74. Li Y., Jiang T., Zhou W. et al. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat.Commun. 2020; 11(1): 100.
  75. Laurent G.S., Shtokalo D., Dong B. et al. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol. 2013; 14(7): R73.
  76. Panzitt K., Tschernatsch M.O., Guelly C. et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 2007; 132: 330-42.
  77. Leucci E., Vendramin R., Spinazzi M. et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature 2016; 531: 518-22.
  78. Gao D., Chu Y., Xia H. et al. Horizontal transfer of non-LTR ret-rotransposons from arthropods to flowering plants. Mol. Biol. Evol. 2018; 35(2): 354-64.
  79. Xue M., Chen W., Li X. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J. Cancer Res. Clin. Oncol. 2016; 142(7): 1407-19.
  80. Wu W., Bhagat T.D., Yang X. et al. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology 2013; 144(5): 956-66.
  81. Zeng Z., Bo H., Gong Z. et al. AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumor Biol. 2016; 37(1): 729-37.
  82. Fan J., Xing Y., Wen X. et al. Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol. 2015; 16(1): 139.
  83. Pal S., Tyler J.K. Epigenetics and aging. Sci. Adv. 2016; 2: e1600584.
  84. KarakUlah G., Yandim C. Signature changes in the expressions of protein-coding genes, lncRNAs, and repeat elements in early and late cellular senescence. Turk. J. Biol. 2020; 44: 356-70.
  85. Noren Hooten N., Fitzpatrick M., Wood W.H. 3rd et al. Age-related changes in microRNA levels in serum. Aging (Albany N.Y.) 2013; 5: 725-40.
  86. Zhang T., Brinkley T.E., Liu K. et al. Circulating miRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults. Aging (Albany N.Y.) 2017; 9: 900-13.
  87. Ukai T., Sato M., Akutsu H. et al. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J. Orthop. Res. 2012; 30: 1915-22.
  88. Zhang H., Yang H., Zhang C. et al. Investigation of microRNA expression in human serum during the aging process. J. Gerontol. A Biol. Sci. Med. Sci. 2015; 70: 102-9.
  89. Nidadavolu L.S., Niedernhofer L.J., Khan S.A. Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress. Aging (Albany N.Y.) 2013; 5: 460-73.
  90. Zheng D., Sabbagh J.J., Blair L.J. et al. MicroRNA-511 Binds to FKBP5 mRNA, Which Encodes a Chaperone Protein, and Regulates Neuronal Differentiation. J. Biol. Chem. 2016; 291: 17897-906.
  91. Sataranatarajan K., Feliers D., Mariappan M.M. et al. Molecular events in matrix protein metabolism in the aging kidney. Aging Cell 2012; 11: 1065-73.
  92. Raihan O., Brishti A., Molla M.R. et al. The Age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain. Neuroscience 2018; 390: 160-73.
  93. Li X., Song Y., Liu D. et al. MiR-495 Promotes Senescence of Mesenchymal Stem Cells by Targeting Bmi-1. Cell. Physiol. Biochem. 2017; 42: 780-96.
  94. Baker J.R., Vuppusetty C., Colley T. et al. MicroRNA-570 is a novel regulator of cellular senescence and inflammaging. FASEB J. 2019; 33: 1605-16.
  95. Ipson B.R., Fletcher M.B., Espinoza S.E. et al. Identifying exosome-derived microRNAs as candidate biomarkers of frailty. J. Frailty Aging 2018; 7: 100-3.
  96. Terlecki-Zaniewicz L., Lammermann I., Latreille J. et al. Small extracellular vesicles and their miRNA cargo are antiapoptic members of the senescence-associated secretory phenotype. Aging (Albany N.Y.) 2018; 10: 1103-32.
  97. Behbahanipour M., Peymani M., Salari M. et al. Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the parkinson’s disease: integrating interatction data to uncover the possible triggering age-related mechanisms. Sci. Rep. 2019; 9: 13759.
  98. Cho J.H., Dimri M., Dimri G.P. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J. Biol. Chem. 2015; 290: 10555-67.
  99. Smith-Vikos T., Liu Z., Parsons C. et al. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany N.Y.) 2016; 8: 2971-87.
  100. Мустафин Р.Н. Гипотеза происхождения вирусов от транспозонов. Молекулярная генетика, микробиология и вирусология 2018; 36: 182-90. [Mustafin R.N. Hypothesis on the origin of viruses from transposons. Molecular Genetics, Microbiology and Virology 2018; 33: 223-32].
  101. Gaglia M.M., Munger K. More than just oncogenes: mechanisms of tumorigenesis by human viruses. Curr. Opin. Virol. 2018; 32: 48-59.
  102. He G., Ding J., Zhang Y. et al. microRNA-21: a kay modulator in oncogenic viral infections. RNA Biol. 2021; 22: 1-9.
  103. Wu X., Li Y., Liu D. et al. miR-27a an oncogenic microRNA of hepatitis B virus-related hepatocellular carcinoma. Asian Pac. J. Cancer Prev. 2013; 14(2): 885-9.
  104. Bondada M.S., Yao Y., Nair V. Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases. Noncoding RNA 2019; 5(1): 24.
  105. Wang D., Zeng Z., Zhang S. et al. Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell proliferation through the LOC553103-STMN1 axis. FASEB J. 2020; 34(6): 8012-27.
  106. Morrison K., Manzano M., Chung K. et al. The Oncogenic Kaposi’s Sarcoma-Associated Herpesvirus Encodes a Mimic of the Tumor-Supressive miR-15/16 miRNA Family. Cell Rep. 2019; 29(10): 2961-9.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2021



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах