Introduction to 3D-bioprinting: the history, principles and stages

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

3D bioprinting of tissue and organ constructs is one of the most rapidly growing directions in biotechnology and regenerative medicine. Stages of 3D bioprinting process, "classic” bioprinting technologies (ink-jet, extrusion and laser-based) and novel (acoustic, magnetic and in situ) bioprinting technologies are described in the review. Data for hydrogel and cell material (single cells and tissue spheroids) usage in 3D bioprinting was systemized.

Full Text

Restricted Access

About the authors

Yu. D Khesuani

3D Bioprinting Solutions

N. S Sergeeva

Moscow PA. Herzen Research Oncological Institute - the branch of National Medical Research Center of Radiology; N.I. Pirogov Russian National Research Medical University

V. A Mironov

3D Bioprinting Solutions

A. G Mustafin

N.I. Pirogov Russian National Research Medical University

A. D Kaprin

Moscow PA. Herzen Research Oncological Institute - the branch of National Medical Research Center of Radiology

References

  1. Freedman D.H. Layer By Layer. MIT Technology Review 2011; 115(1): 50-3.
  2. Wilson W.C. Jr., Boland T. Cell and organ printing 1: protein and cell printers. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003; 272(2): 491-6.
  3. Mironov V.A., Boland T., Trusk T. et al. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003; 21(4): 157-61.
  4. Coburn J., FDA Additive Manufacturing Working Group. Technical Considerations for Additive Manufactured Devices. In: FDA/RSNA Joint Meeting on 3D Printed Patient-specific Anatomic Models; 2017 Aug 31; Silver Spring, MD, USA; 2017. https://www.fda.gov/downloads/MedicalDevices/ NewsEvents/WorkshopsConferences/UCM575719.pdf
  5. Mironov V.A., Kasyanov V.A., Marwald R.R. Organ printing: from bioprinter to organ biofabrication line. Curr. Opin. Biotechnol. 2011; 22: 667-73.
  6. Rengier F., Mehndiratta A., von Tengg-Kobligk H. et al. 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 2010; 5: 335-41.
  7. Chen X., Li X., Xu L. et al. Development of a computer-aided design software for dental splint in orthognathic surgery. Sci. Rep. 2016; 14(6): 1-10.
  8. Hesuani Y.D., Pereira F.D.A.S., Parfenov V. et al. Design and implementation of novel multifunctional 3D bioprinter. 3D Printing and Additive Manufacturing 2016; 3(1): 65-8.
  9. Shafiee A., Atala A. Printing Technologies for Medical Applications. Trends Mol. Med. 2016; 22(3): 254-65.
  10. Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014; 32(8): 773-85.
  11. Amer B.D., Ibrahim T.O. Bioprinting Technology: A Current State-of-the-Art Review. J. Manuf. Sci. Eng. 2014; 136(6): 1-11.
  12. Leberfinger A.N., Ravnic D.J., Dhawan A. et al. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl. Med. 2017; 6(10): 1940-8.
  13. Barron J.A., Ringeisen B.R., Kim H. et al. Application of laser printing to mammalian cells. Thin Solid Films 2004; 453-454: 383-7.
  14. Mezel C., Souquet A., Hallo L. et al. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication 2010; 2(1): 1-7.
  15. Ozbolat I., Yu Y. Bioprinting Towards Organ Fabrication: Challenges and Future Trends. IEEE Trans. Biomed. Eng. 2013; 60(3): 691-9.
  16. Rocca M., Fragasso A., Liu W. et al. Embedded Multimaterial Extrusion Bioprinting. SLAS Technol. 2017; 1: 1-10.
  17. Jakab K., Norotte C., Marga F. et al. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2010; 2: 1-14.
  18. Peltola S.M., Melchels F.P., Grijpma D.W. et al. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 2008; 40: 268-80.
  19. Wang S., Lee J.M., Yeong W.Y. Smart hydrogels for 3D Bioprinting. Int. J. Bioprint. 2015; 1(1): 3-14.
  20. Chia H.N., Wu B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015; 9: 1-14.
  21. Mandrycky C., Wang Z., Kim K. et al. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 2016; 34(4): 422-34.
  22. Ozbolat I., Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016; 76: 321-43.
  23. Zhu W., Ma X., Gou M. et al. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 2016; 40: 103-12.
  24. Heller M., Bauer H.K., Goetze E. et al. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration. Int. J. Comput. Dent. 2016; 19(4): 301-21.
  25. Hölzl K., Lin S., Tytgat L. et al. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8(3): 1-19.
  26. Wang Y., Adokoh C.K., Narain R. Recent development and biomedical applications of self-healing hydrogels. Expert Opin. Drug Deliv. 2017; 23: 1-15.
  27. Hakam M.S., Imani R., Abolfathi N. et al. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: An in-vitro study. Biomed. Mater. Eng. 2016; 27(6): 669-82.
  28. Boyd-Moss M., Fox K., Brandt M. et al. Bioprinting and Biofabrication with Peptide and Protein Biomaterials. Adv. Exp. Med. Biol. 2017; 1030: 95-129.
  29. Costa J.B., Silva-Correia J., Oliveira J.M. et al. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants. Adv. Healthc. Mater. 2017; 6(22): 1-10.
  30. Jungst T., Smolan W., Schacht K. et al. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chem. Rev. 2016; 116(3): 1496-539.
  31. Wtodarczyk-Biegun M.K., Del Campo A. 3D bioprinting of structural proteins. Biomaterials 2017; 134: 180-201.
  32. Derby B. Printing and Prototyping of Tissues and Scaffolds. Science 2012; 338(6109): 921-6.
  33. Fedorovich N.E., De Wijn J.R., Verbout A.J. et al. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 2008; 14: 127-33.
  34. Fedorovich N.E., Schuurman W., Wijnberg H.M. et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C: Methods 2012; 18: 33-44.
  35. Gaetani R., Doevendans P., Metz C.H.G. et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 2012; 33: 1782-90.
  36. Lee J.S., Hong J.M., Jung J.W. et al. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 2014; 6(2): 024103.
  37. Poldervaart M.T., Wang H., van der Stok J. et al. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One 2013; 8(8): e72610.
  38. Ye K., Felimban R., Traianedes K. et al. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PLoS One 2014; 9(6): e99410.
  39. Duarte Campos D.F., Blaeser A., Weber M. et al.Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 2013; 5(1): 015003.
  40. Markstedt K., Mantas A., Tournier I. et al. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules 2015; 16(5): 1489-96.
  41. Dana N., Parker V., Meredith M. et al. Photocrosslinkable hyaluronan as scaffold for articular cartilage repair. Ann. Biomed. Eng. 2004; 32: 391-7.
  42. Skardal A., Zhang J., McCoard L. et al. Photocrosslinkable hyaluronan -gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 2010; 16: 2675-85.
  43. Lee V., Singh G., Trasatti J.P. et al. Design and fabrication of human skin by three-dimensional bioprinting.Tissue Eng. Part C: Methods 2014; 20: 473-84.
  44. Lee W., Lee V., Polio S. et al. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 2010; 105: 1178-86.
  45. Lee W., Pinckney J., Lee V. et al. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport 2009; 20: 798-803.
  46. Bertassoni L.E., Cardoso J.C., Manoharan V. et al. Direct-write bio-printing of cell-laden methacrylated gelatin hydrogels. Biofabrication 2014; 6(2): 024105.
  47. Billiet T., Gevaert E., De Schryver T. et al. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 2014; 35(1): 49-62.
  48. Wang X., Yan Y., Pan Y. et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng. 2006; 12: 83-90.
  49. Gregor A., Hosek J. 3D printing methods of biological scaffolds used in tissue engineering. In: Mechanical Engineering And New High-Tech Products Development - MECAHITECH’11. Proceedings of International Conference On Innovations, Recent Trends And Challenges In Mechatronic; 2011; 3: 88-92.
  50. Lee V., Lanzi A., Ngo H. et al. Generation of multi-scale vascular network system within 3D hydrogel using 3D Bio-printing technology. Cell. Mol. Bioeng. 2014; 7(3): 460-72.
  51. Xu W., Wang X., Yan Y. et al. Rapid prototyping three-dimensional cell/gelatin/fibrinogen constructs for medical regeneration. J. Bioact. Compat. Polym. 2007; 22: 363-77.
  52. Hockaday L., Kang K.H., Colangelo N.W. et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 2012; 4(3): 035005.
  53. Wu W., De Coninckn A., Lewis J. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 2011; 23: 78-83.
  54. Fedorovich N.E., Wijnberg H.M., Dhert W.J. et al. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng. Part A 2011; 17: 2113-21.
  55. Snyder J.E., Hamid Q., Wang C. et al. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 2011; 3(3): 034112.
  56. Marchioli G., van Gurp L., van Krieken P.P. et al. Fabrication of threedimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication 2015; 7(2): 1-18.
  57. Faulkner-Jones A., Fyfe C., Cornelissen D.J. et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocytelike cells for the generation of mini-livers in 3D. Biofabrication 2015; 7: 1-13.
  58. Horvath L., Umehara Y., Jud C. et al. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 2015; 5: 1-8.
  59. Owens C.M., Marga F., Forgacs G. et al. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 2013; 5: 1-10.
  60. Huang G.S., Tseng C.S., Linju Y.B. et al. Solid freeformfabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration. Eur. Cell Mater. 2013; 26: 179-94.
  61. Kudan Ye.V., Pereira F.D.A.S., Parfenov V.A. et al. Spreading of tissue spheroids from primary human fibroblasts on the surface of microfibrous electrospun polyurethane matrix (A scanning electron microscopic study). Morphology 2015; 148(6): 70-4.
  62. Moldovan N.I., Hibino N., Nakayama K. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting. Tissue Eng. Part B: Rev. 2017; 23(3): 237-44.
  63. Pérez-Pomares J.M., Foty R.A. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 2006; 28: 809-21.
  64. Yamada K.M., Cucierman E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007; 130: 601-14.
  65. Kelm J.M., Djonov V., Ittner L.M. et al. Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Eng. 2006; 12: 2151-60.
  66. Hamilton G.A., Westmorel C., George A.E. Effects of medium composition on the morphology and function of rat hepatocytes cultured as spheroids and monolayers. In vitro Cell. Dev. Biol. Anim. 2001; 37: 656-67.
  67. Nyberg S.L., Hardin J., Amiot B. et al. Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver. Liver Transpl. 2005; 11: 901-10.
  68. Napolitano A.P., Dean D.M., Man A.J. et al. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. BioTechniques 2007; 43: 494-500.
  69. Chan H.F., Zhang Y., Ho Y.P. et al. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep. 2013; 3: 1-8.
  70. Chua K.N., Lim W.S., Zhang P. et al. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 2005; 26: 2537-47.
  71. Lin R.Z., Chan H.Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 2008; 3: 1172-84.
  72. Ong C.S., Fukunishi T., Nashed A. et al. Creation of cardiac tissue exhibiting mechanical integration of spheroids using 3D bioprinting. J. Vis. Exp. 2017; 125(2): 1-5.
  73. Kelm J.M., Breitbach M., Fischer G. et al. 3D Microtissue Formation of Undifferentiated Bone Marrow Mesenchymal Stem Cells Leads to Elevated Apoptosis. Tissue Eng. Part A 2011; 18(7-8): 692-702.
  74. Bhang S.H., Lee S., Shin J.Y. et al. Efficacious and clinically relevant conditioned medium of human adipose-derivedstem cells for therapeutic angiogenesis. Mol. Ther. 2014; 22(4): 862-72.
  75. Jakab K., Neagu A., Mironov V. et al. Engineering biological structures of prescribed shape using self-assembling multicellular systems. PNAS USA 2004; 101: 2864-9.
  76. Yanagi Y., Nakayama K., Taguchi T. et al. In vivo and ex vivo vivo methods of growing a liver bud through tissue connection. Sci. Rep. 2017; 7(1): 1-15.
  77. Park I.S., Chung P.S., Ahn J.C. Angiogenic synergistic effect of adipose-derived stromal cell spheroids with low-level light therapy in a model of acute skin flap ischemia. Cells Tissues Organs 2016; 202(5-6): 307-18.
  78. Kwon S.H., Bhang S.H., Jang H.K. et al. Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing. J. Surg. Res. 2015; 194: 8-17.
  79. Yamaguchi Y., Ohno J., Sato A. et al. Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol. 2014; 14: 1-10.
  80. Ishihara K., Nakayama K., Akieda S. et al. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J. Orthop. Surg. Res. 2014; 9(98): 1-10.
  81. Chatterjea A., Yuan H., Fennema E. et al. Engineering new bone via a minimally invasive route using human bone marrow-derived stromal cell aggregates, microceramic particles, and human platelet-richplasma gel. Tissue Eng. Part A 2013; 19(3-4): 340-9.
  82. Murata D., Tokunaga S., Tamura T. et al. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells. J. Orthop. Surg. Res. 2015; 10(35): 1-12.
  83. Kuchler-Bopp S., Becavin T., Kokten T. et al. Three-dimensional microculture system for tooth tissue engineering. J. Dent. Res. 2016; 95: 657-64.
  84. Tseng T.C., Hsu S.H. Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 2014; 35: 2630-41.
  85. Guo L., Ge J., Zhou Y. et al. Three-dimensional spheroid cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem Cells Dev. 2014; 23: 978-89.
  86. Ito A., Ino K., Hayashida M. et al. Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 2005; 11(9-10): 1553-61.
  87. Bratt-Leal A., Kepple K., Carpenedo R. et al. Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates. Integr. Biol. 2011; 3(12): 1224-32.
  88. Ho V.H.B., Müller K.H., Barcza A. et al. Generation and manipulation of magnetic multicellular spheroids. Biomaterials 2010; 31(11): 3095-102.
  89. Luciani N., Vicard D., Gazeau F. et al. Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomater. 2016; 37: 101-10.
  90. Whatley B., Li X., Zhang N. et al. Magnetic-directed patterning of cell spheroids. J. Biomed. Mater. Res. Part A 2014; 102(5): 1537-47.
  91. Tasoglu S., Yu C.H., Liaudanskaya V. et al. Magnetic Levitational Assembly for Living Material Fabrication. Adv. Healthc. Mater. 2015; 4(10): 1469-76.
  92. Guo F., Mao Z., Chen Y. et al. Three-dimensional manipulation of single cells using surface acoustic waves. PNAS USA 2016; 113(6): 1522-7.
  93. Zhou Y. The Application of Ultrasound in 3D Bio-Printing. Molecules 2016; 21(5): E590.
  94. Bazou D. Biochemical properties of encapsulated high-density 3-D HepG2 aggregates formed in an ultrasound trap for application in hepatotoxicity studies : Biochemical responses of encapsulated 3-D HepG2 aggregates. Cell Biol. Toxicol. 2010; 26(2): 127-41.
  95. Guo F., Li P., French J. et al. Controlling cell-cell interactions using surface acoustic waves. PNAS USA 2015; 112(1): 43-8.
  96. Friend J., Yeo L.Y. Surface acoustic wave microfluidics. Lab. Chip 2013; 13(18): 3626-49.
  97. Li P., Mao Zh., Peng Zh. et al. Acoustic separation of circulating tumor cells. PNAS USA 2015; 112(16): 4970-5.
  98. Sapozhnikov O.A., Bailey M.R. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust. Soc. Am. 2013; 133(2): 661-76.
  99. Campbell P., Weiss L. Tissue engineering with the aid of inkjet printers. Expert Opin. Biol. Ther. 2007; 7(8): 1123-7.
  100. Skardal A., Mack D., Kapetanovic E. et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 2012; 1(11): 792-802.
  101. Keriquel V., Guillemot F., Arnault I. et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2010; 2(1): 1-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies