Elimination of PKH26-labeled MMSC after allogeneic transplantation



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The transplanted allogeneic multipotent mesenchymal stromal cells (MMSC) were previously thought to be poorly recognized by host immune system; the prolonged survival of these cells in host tissues was explained by their privileged immune status. As long as this concept is currently being revised, the understanding of MMSC routes should be reconsidered given the emerging role of host immune system in their gradual elimination. The study was focused upon elimination of PKH26-labeled MMSC, derived from umbilical cord, analyzed in animal models for two distinct pathologies: subtotal liver resection and critical skeletal muscle ischemia. Specific patterns of PKH26-positive macrophages (defined as CD68+ cells) were described for intact spleen and regenerating liver, and for the ischemic skeletal muscle, respectively. The PKH26-positive cells were observed in spleen of the subtotally hepatectomized model animals at 24 h. after surgery combined with MMSC transplantation; 83,2±4,6% of these were CD68+; the ratio reached 100% 3 days after transplantation. The PKH26-positive cells were also detected in regenerating liver starting from 3 days after transplantation, the great majority of them were CD68+ (96,8±2,2% and 96,3±2,6% for 3 and 10 days after transplantation, respectively). A different sort of host environment was provided by the damaged skeletal muscle model: productive phase of aseptic inflammation triggered by ischemia. The PKH26-positive fraction in the pool of macrophages significantly increased from 48,1 ±3,2% 3 days to 76,2±3,9% 30 days after transplantation. Thus, transplanted allogeneic MMSC are recognized and eliminated by host immune system. The rates of elimination depend on site of injection and time elapsed since the injection; the efficacy may reach 100%. The presence of РКН26 vital label (as well as any other exogenous label) in living cell can by no means solely prove its exogenous origin. The massive elimination of MMSC by host macrophages leads to impregnation of the latter with the dye that is masking the true presence of the former. The study accentuates the need of additional criteria for correct data interpretation.

Full Text

Restricted Access

About the authors

IV. V Arutyunyan

Research Center for Obstetrics, Gynecology and Perinatology; Research Institute of Human Morphology of the RAMS

A. V Elchaninov

Research Center for Obstetrics, Gynecology and Perinatology; Research Institute of Human Morphology of the RAMS; Pirogov Russian National Research Medical University

T. H Fatkhudinov

Research Center for Obstetrics, Gynecology and Perinatology; Research Institute of Human Morphology of the RAMS; Pirogov Russian National Research Medical University

A. V Makarov

Research Center for Obstetrics, Gynecology and Perinatology; Research Institute of Human Morphology of the RAMS; Pirogov Russian National Research Medical University

E. Y Kananykhina

Research Center for Obstetrics, Gynecology and Perinatology; Research Institute of Human Morphology of the RAMS

G. B Bolshakova

Research Institute of Human Morphology of the RAMS

V. V Glinkina

Pirogov Russian National Research Medical University

D. V Goldshtein

Research Centre of Medical Genetics of the RAMS

G. T Sukhikh

Research Center for Obstetrics, Gynecology and Perinatology

References

  1. Le Blanc К. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5(6): 485-9.
  2. Nauta A.J., Fibbe W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007; 110(10): 3499-506.
  3. Barry F.P., Murphy J.M., English K. et al. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev. 2005; 14(3): 252-65.
  4. De Miguel M.P., Fuentes-Julian S., Blazquez-Martinez A. et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr. Mol. Med. 2012; 12(5): 574-91.
  5. Farini A., Sitzia C., Erratico S. et al. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int. 2014; 2014: 306573.
  6. Weiss M.L., Anderson C., Medicetty S. et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells 2008; 26(11): 2865-74.
  7. Manochantr S., U-pratya Y., Kheolamai P. et al. Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton's jelly and umbilical cord. Intern. Med. J. 2013; 43(4): 430-9.
  8. Database of publicly and privately supported clinical studies of human participants. http://www.clinicaltrials.gov.
  9. □imarino A.M., Caplan A.I., Bonfield T.L. Mesenchymal stem cells in tissue repair. Front. Immunol. 2013; 4: 201.
  10. Nauta A.J., Westerhuis G., Kruisselbrink A.B. et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108(6): 2114-20.
  11. Sudres M., Norol F., Trenado A. et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J. Immunol. 2006; 176(12): 7761-7.
  12. Lin C.S., Xin Z.C., Dai J. et al. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol. Histopathol. 2013; 28(9): 1109-16.
  13. Rieck B. Unexpected durability of PKH 26 staining on rat adipocytes. Cell Biol. Int. 2003; 27(5): 445-7.
  14. Li P., Zhang R., Sun H. et al. PKH26 can transfer to host cells in vitro and vivo. Stem Cells Dev. 2013; 22(2): 340-4.
  15. Tao R., Sun T.J., Han Y.Q. et al. Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 2014; 18(8): 1127-34.
  16. Kramann R., Kunter U., Brandenburg V.M. et al. Osteogenesis of heterotopically transplanted mesenchymal stromal cells in rat models of chronic kidney disease. J. Bone Miner. Res. 2013; 28(12): 2523-34.
  17. Zheng S.X., Weng Y.L., Zhou C.Q. et al. Comparison of cardiac stem cells and mesenchymal stem cells transplantation on the cardiac electrophysiology in rats with myocardial infarction. Stem Cell Rev. 2013; 9(3): 339-49.
  18. Maus U., Herold S., Muth H. et al. Monocytes recruited into the alveolar air space of mice show a monocytic phenotype but upregulate CD14. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280(1): L58-68.
  19. Арутюнян И.В., Макаров А.В., Фатхудинов Т.Х. и соавт. Выделение культуры мультипотентных стромальных клеток пупочного канатика крысы методом эксплантов. Клиническая и экспериментальная морфология 2012; 3: 57-61.
  20. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
  21. Арутюнян И.В., Макаров А.В., Фатхудинов Т.Х. и соавт. Верификация хронической ишемии нижних конечностей при моделировании на лабораторных животных. Клиническая и экспериментальная морфология 2012; 3: 47-53.
  22. Cesta M.F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 2006; 34(5): 455-65.
  23. Li J., Li M., Niu B. et al. Therapeutic potential of stem cell in liver regeneration. Jianping GONG Front. Med. 2011; 5(1): 26-32.
  24. Cho J.W., Lee C.Y., Ko Y. Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J. Gastroenterol. Hepatol. 2012; 27(8): 1362-70.
  25. Sun S., Chen G., Xu M. et al. Differentiation and migration of bone marrow mesenchymal stem cells transplanted through the spleen in rats with portal hypertension. PLoS One 2013; 8(12): e83523.
  26. Liew A., O'Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res. Ther. 2012; 3(4): 28.
  27. Moon M.H., Kim S.Y., Kim Y.J. et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol. Biochem. 2006; 17(5-6): 279-90.
  28. Xu H., Miki K., Ishibashi S. et al. Transplantation of neuronal cells induced from human mesenchymal stem cells improves neurological functions after stroke without cell fusion. J Neurosci. Res. 2010; 88(16): 3598-609.
  29. Sato Y., Araki H., Kato J. et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 2005;106(2): 756-63.
  30. Ferrand J., №ё! D., Lehours P. et al. Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One 2011; 6(5): e19569.
  31. Макаров А.В., Арутюнян И.В., Фатхудинов Т.Х. и др. Влияние трансплантации мультипотентных стромальных клеток пупочного канатика на состояние ишемизированной мышечной ткани конечностей крыс. Клиническая и экспериментальная морфология 2013; 4(8): 45-52.
  32. Togel F., Westenfelder C. The role of multipotent marrow stromal cells (MSCs) in tissue regeneration. Organogenesis 2011; 7(2): 96-100.
  33. Mastri M., Lin H., Lee T. Enhancing the efficacy of mesenchymal stem cell therapy. World J. Stem Cells 2014; 6(2): 82-93.
  34. Nakajima H., Uchida K., Guerrero A.R. et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. Neurotrauma 2012; 29(8): 1614-25.
  35. Cho D.I., Kim M.R., Jeong H.Y. et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp. Mol. Med. 2014; 46: e70.
  36. Kim H., Darwish I., Monroy M.F. et al. Mesenchymal stromal (stem) cells suppress pro-inflammatory cytokine production but fail to improve survival in experimental staphylococcal toxic shock syndrome. BMC Immunol. 2014; 15: 1.
  37. Melief S.M., Schrama E., Brugman M.H. et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells 2013; 31(9): 1980-91.
  38. Pawelczyk E., Arbab A.S., Chaudhry A. et al. In vitro model of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages from labeled stem cells: implications for cellular therapy. Stem Cells 2008; 26(5): 1366-75.
  39. Pawelczyk E., Jordan E.K., Balakumaran A. et al. In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS One 2009; 4(8): e6712.
  40. Ito M., Hiramatsu H., Kobayashi K. et al. NOD/SCID/gamma(c) (null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100(9): 3175-82.
  41. Noad J., Gonzalez-Lara L.E., Broughton H.C. et al. MRI tracking of transplanted iron-labeled mesenchymal stromal cells in an immune-compromised model of critical limb ischemia. NMR Biomed. 2013; 26(4): 458-67.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies