Fusion-phenomenon in normal histogenesis and in pathology: part 1

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Various processes happening in human organism depend on cell fusion (also called "fusion-phenomenon”). This review focuses on role of this phenomenon in the histogenesis of different tissues and molecular mechanism of the cell fusion. The Part 1 describes fusion-phenomenon in the normal, physiological conditions.

Full Text

Restricted Access

About the authors

D. O Buev

I.P. Pavlov Ryazan State Medical University

A. M Emelin

I.P. Pavlov Ryazan State Medical University

R. V Deev

I.P. Pavlov Ryazan State Medical University; Human Stem Cells Institute; Research Institute of General Pathology and Pathophysiology

References

  1. Batsida-Ruiz D., Van Hoesen K., Cohen M. The dark side of cell fusion. Int. J. Mol. Sci. 2016; 17(5). doi: 10.3390/ijms17050638.
  2. Hindi S.M., Tajrishi M.M., Kumar A. Signaling Mechanisms in Mammalian Myoblast Fusion. Sci. Signal. 2013; 6(272): re2. doi: 10.1126/ scisignal.2003832.
  3. Ishii M., Saeki Y. Osteoclast cell fusion: mechanisms and molecules. Modern Rheumatology 2008; 18(3): 220-7.
  4. Hernandez J.M., Podbilewicz B. The hallmarks of cell-cell fusion. Development 2017; 144(24): 4481-95.
  5. Gerbaud P., Pidoux G. Review: An overview of molecular events occurring in human trophoblast fusion. Placenta 2015; 36 Suppl 1: 35-42.
  6. Bjerregaard B., Lemmen J.G., Petersen M.R. et al. Syncytin-1 and its receptor is present in human gametes. J. Assist. Reprod. Genet. 2014; 31(5): 533-9.
  7. Soe K., Andersen T.L., Hobolt-Pedersen A.S. et al. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone 2011; 48(4): 837-46.
  8. Bjerregard B., Ziomkiewicz I., Schulz A. et al. Syncytin-1 in differentiating human myoblasts: relationship to caveolin-3 and myogenin. Cell Tissue Res. 2014; 357(1): 355-62.
  9. Lokossou A.G., Toudic C., Barbeau B. Implication of Human Endogenous Retrovirus Envelope Proteins in Placental Functions. Viruses 2014; 6(11): 4609-27.
  10. Palermo A., Doyonnas R., Bhutani N. et al. Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional. FASEB Journal 2009; 23(5): 1431-40.
  11. Kemp K., Wilkins A., Scolding N. Cell fusion in the brain: two cells forward, one cell back. Acta Neuropathol. 2014; 128(5): 629-38.
  12. Tash J.S., Means A.R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol. Reprod. 1983; 28(1): 75-104.
  13. Sebkova N., Ded L., Vesela K. et al. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction 2013; 147(2): 231-40.
  14. Inoue N., Ikava M., Okabe M. The mechanism of sperm-egg interaction and the involvement of IZUMO1 in fusion. Asian J. Androl. 2011; 13(1): 81-7.
  15. Stein K.K., Primakoff P., Myles D. Sperm-egg fusion: events at the plasma membrane. J. Cell Sci. 2004; 117(Pt 26): 6269-74.
  16. Krauchunas A.R., Marcello M.R., Singson A. The molecular complexity of fertilization: Introducing the concept of a fertilization synapse. Mol. Reprod. Dev. 2016; 83(5): 376-86.
  17. Barraud-Lange V., Naud-Barriant N., Saffar L. Alpha6beta1 integ-rin expressed by sperm is determinant in mouse fertilization. BMC Dev Biol. 2007; 7: 102. doi: 10.1186/1471-213X-7-102.
  18. Inoue N., Hamada D., Kamikubo H. et al. Molecular dissection of IZU-MO1, a sperm protein essential for sperm-egg fusion. Development 2013; 140(15): 3221-9.
  19. Bianchi E., Doe B., Goulding D. et al. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 2014; 508(7497): 483-7.
  20. Inoue N., Hagihara Y., Wright D. et al. Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. Nat. Commun. 2015; 6:8858. doi: 10.1038/ncomms9858.
  21. Termini C.M., Gillette J.M. Tetraspanins Function as Regulators of Cellular Signaling. Front. Cell. Dev. Biol. 6; 5: 34. doi: 10.3389/ fcell.2017.00034.
  22. Tachibana I., Hemler M.E. Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J. Cell Biol. 1999; 146(4): 893-904.
  23. Takeda Y., Tachibana I., Miyado K. Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J. Cell Biol. 2003; 161(5): 945-56.
  24. Le Naour F., Rubinstein E., Jasmin C. et al. Severely reduced female fertility in CD9-deficient mice. Science 2000; 287(5451): 319-21.
  25. Klinovska K., Sebkova N., Dvorakova-Hortova K. Sperm-Egg fusion: a molecular enigma of mammalian reproduction. Int. J. Mol. Sci. 2014; 15(6): 10652-68.
  26. Jahromi S., Shamsir M. Construction and Analysis of the Cell Surface’s Protein Network for Human Sperm-Egg Interaction. ISRN Bioinformatics 2013: doi: 10.1155/2013/962760.
  27. Sabetian S., Shamsir M.S., Abu Naser M. Functional features and protein network of human sperm-egg interaction. Syst. Biol. Reprod. Med. 2014; 60(6): 329-37.
  28. Chen H., Sampson N.S. Mediation of sperm-egg fusion: evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilin beta. Chemistry & Biology 1999; 6(1): 1-10.
  29. Gauster M., Moser G., Orendi K. et al. Factors Involved in Regulating Trophoblast Fusion: Potential Role in the Development of Preeclampsia. Placenta 2009; 30 Suppl A: 49-54.
  30. Getsios S., MacCalman C.D. Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro. Dev. Biol. 2003; 257(1): 41-54.
  31. Getsios S., Chen G.T., MacCalman C.D. Alpha-, beta-, gamma-catenin, and p120(CTN) expression during the terminal differentiation and fusion of human mononucleate cytotrophoblasts in vitro and in vivo. Mol. Reprod. Dev. 2001; 59(2): 168-77.
  32. Aghababaei M., Hogg K., Perdu S. et al. ADAM12-directed ectodo-main shedding of E-cadherin potentiates trophoblast fusion. Cell Death Differ. 2015; 22(12): 1970-84.
  33. Pidoux G., Gerbaud P., Dompierre J. et al. PKA-ezrin-connexin 43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. J. Cell Sci. 2014; 127(Pt 19): 4172-85.
  34. Kudo Y., Boyd C.A. Changes in expression and function of syncytin and its receptor, amino acid transport system B(0) (ASCT2), in human placental choriocarcinoma BeWo cells during syncytialization. Placenta 2002; 23(7): 536-41.
  35. Toufaily C., Vargas A., Lemire M. et al. MFSD2a, the Syncytin-2 receptor, is important for trophoblast fusion. Placenta 2013; 34(1): 85-8.
  36. Sugimoto J., Sugimoto M., Bernstein H. et al. A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci. Rep. 2013; 3: 1462. doi: 10.1038/srep01462.
  37. Данилов Р.К. Руководство по гистологии. Том 1. 2-е издание, исправленное и дополненное. СПб: СпецЛит; 2011.
  38. Kelly A.M., Rubinstein N.A. Why are fetal muscles slow? Nature 1980; 288: 266-9.
  39. Duxson M.J., Usson Y., Harris A.J. The origin of secondary myo-tubes in mammalian skeletal muscles: ultrastructural studies. Development 1989; 107: 743-50.
  40. Matsakas A., Otto A., Elashry M.I. et al. Altered primary and secondary myogenesis in the myostatin-null mouse. Rejuvenation Res. 2010; 13(6): 717-27.
  41. Zhou X., Platt J.L. Molecular and Cellular Mechanisms of Mammalian Cell Fusion. Adv. Exp. Med. Biol. 2011; 713: 33-64.
  42. Sohn R.L., Huang P., Kawahara G. et al. A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. PNAS USA 2009; 106(23): 9274-9.
  43. Lafuste P., Sonnet C., Chazaud B. et al. ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation. Mol. Biol. Cell 2005; 16(2): 861-70.
  44. Schwander M., Leu M., Stumm M. et al. Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev. Cell 2003; 4(5): 673-85.
  45. Hollnagel A., Grund C., Franke W.W. et al. The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol. Cell. Biol. 2002; 22(13): 4760-70.
  46. Georgiadis V., Stewart H.J., Pollard H.J. Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev. Dyn. 2007; 236(4): 1014-24.
  47. Demonbreun A.R., Biersmith B.H., McNally E.M. Membrane fusion in muscle development and repair. Semin. Cell Dev. Biol. 2015; 45: 48-56.
  48. Kim G.W., Park S.Y., Kim I.S. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a “fuse-me” signal. BMB Rep. 2016; 49(6): 303-4.
  49. Shin N.Y., Choi H., Neff L. et al. Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts. Journal of Cellular Biology 2014; 207(1): 73-89.
  50. Redelsperger F., Raddi N., Bacquin A. et al. Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice. PLoS Genet. 2016; 12(9): e1006289. doi: 10.1371/journal.pgen.1006289.
  51. Frese S., Ruebner M., Suhr F. et al. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo. PLoS One 2015; 10(7): e0132099. doi: 10.1371/journal.pone.0132099.
  52. Millay D.P., O’Rourke F.R., Sutherland L.B. et al. Myomaker: A membrane activator of myoblast fusion and muscle formation. Nature 2013; 499(7458): 301-5.
  53. Quinn M.E., Goh Q., Kurosaka M. et al. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat. Commun. 2017; 8: 15665. doi: 10.1038/ncomms15665.
  54. Kim J.H., Jin P., Duan R. et al. Mechanisms of myoblast fusion during muscle development. Curr. Opin. Genet. Dev. 2015; 32: 162-70.
  55. Sung B.H., Weaver A. Cell-cell fusion: a new function for inva-dosomes. Curr. Biol. 2011; 21(3): 121-3.
  56. Carman C.V., Sage P.T., Sciuto T.E. et al. Transcellular diapedesis is initiated by invasive podosomes. Immunity 2007; 26(6): 784-97.
  57. Abmayr S.M., Pavlath G.K. Myoblast fusion: lessons from flies and mice. Development 2012; 139(4): 641-56.
  58. Yoon S., Molloy M.J., Wu M.P. et al. C6ORF32 is upregulated during muscle cell differentiation and induces the formation of cellular filopodia. Dev. Biol. 2007; 301(1): 70-81.
  59. Mukai A., Hashimoto N. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion. Exp. Cell Res. 2008; 314(2): 387-97.
  60. Mukai A., Kurisaki T., Sato S.B. et al. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells. Exp. Cell Res. 2009; 315(17): 3052-63.
  61. Nowak S.J., Nahirney P.C., Hadjantonakis A.K. et al. Nap1-mediat-ed actin remodeling is essential for mammalian myoblast fusion. J. Cell Sci. 2009; 122(Pt 18): 3282-93.
  62. Städler B., Blättler T.M., Franco-Obregón A. Time-lapse imaging of In Vitro myogenesis using atomic force microscopy. J. Microsc. 2010; 237(1): 63-9.
  63. Шурыгина О.В. Ямщиков Н.В. Абрамов В.Н. и соавт. Эмбриональное развитие мышечных тканей стенки влагалища крыс. Фундаментальные исследования 2014; 7(часть 4): 812-6.
  64. Helming L., Gordon S. The molecular basis of macrophage fusion. Immunobiology 2007; 212(9-10): 785-93.
  65. Moreno J.L., Mikhailenko I., Tondravi M.M. et al. IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J. Leukoc. Biol. 2007; 82(6): 1542-53.
  66. Yagi M., Ninomiya K., Fujita N. et al. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms. J. Bone Miner. Res. 2007; 22(7): 992-1001.
  67. Helming L., Gordon S. Molecular mediators of macrophage fusion. Trends Cell Biol. 2009; 19(10): 514-22.
  68. Brodbeck W.G., Anderson J.M. Giant cell formation and function. Curr. Opin. Hematol. 2009; 16(1): 53-7.
  69. Peng Q., Malhotra S., Torchia J.A. et al. TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci. Signal. 2010; 3(122): ra38. doi: 10.1126/scisignal.2000500.
  70. Vivier E., Nunès J.A., Vély F. Natural killer cell signaling pathways. Science 2004; 306(5701): 1517-9.
  71. Helming L., Tomasello E., Kyriakides T.R. et al. Essential role of DAP12 signaling in macrophage programming into a fusion-competent state. Sci. Signal. 2008; 1(43): ra11. doi: 10.1126/scisignal.1159665.
  72. Oikawa T., Oyama M., Kozuka-Hata H. et al. Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion. J. Cell Biol. 2012; 197(4): 553-68.
  73. Xing L., Xiu Y., Boyce B.F. Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J. Orthop. 2012; 3(12): 212-22.
  74. Takegahara N., Kim H., Mizuno H. et al. Involvement of Receptor Activator of Nuclear Factor-KB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts. J. Biol. Chem. 2016; 291(7): 3439-54.
  75. Cui W., Ke J.Z., Zhang Q. et al. The intracellular domain of CD44 promotes the fusion of macrophages. Blood 2006; 107(2): 796-805.
  76. Miyamoto K., Ninomiya K., Sonoda K. et al. MCP-1 expressed by osteoclasts stimulates osteoclastogenesis in an autocrine/paracrine manner. Biochem. Biophys. Res. Commun. 2009; 383(3): 373-7.
  77. MacLauchlan S., Skokos E.A., Meznarich N. et al. Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9. J. Leukoc. Biol. 2009; 85(4): 617-26.
  78. Yagi M., Miyamoto T., Sawatani Y. et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 2005; 202(3): 345-51.
  79. Chiu Y.H., Ritchlin C.T. DC-STAMP: A Key Regulator in Osteoclast Differentiation. J. Cell. Physiol. 2016; 231(11): 2402-7.
  80. Miyamoto H., Katsuyama E., Miyauchi Y. et al. An essential role for STAT6-STAT1 protein signaling in promoting macrophage cell-cell fusion. J. Biol. Chem. 2012; 287(39): 32479-84.
  81. Jay S.M., Skokos E., Laiwalla F. et al. Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation. Am. J. Pathol. 2007; 171(2): 632-40.
  82. Pajcini K.V., Pomerantz J.H., Alkan O. et al. Myoblasts and macrophages share molecular components that contribute to cell-cell fusion. J. Cell Biol. 2008; 180(5): 1005-19.
  83. Verma S.K., Leikina E., Melikov K. et al. Late stages of the synchronized macrophage fusion in osteoclast formation depend on dynamin. Biochem. J. 2014; 464(3): 293-300.
  84. van den Eijnde S.M., van den Hoff M.J., Reutelingsperger C.P. et al. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J. Cell Sci. 2001; 114(Pt. 20): 3631-42.
  85. Helming L., Winter J., Gordon S. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J. Cell Sci. 2009; 122(Pt. 4): 453-9.
  86. Lemaire I., Falzoni S., Leduc N. et al. Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. Biochem. J. 2014; 464(3): 293-300.
  87. Greenberg M.E., Sun M., Zhang R. et al. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 2006; 203(12): 2613-25.
  88. Lundberga P., Koskinena C., Baldockc P.O. et al. Osteoclast formation is strongly reduced both in vivo and in vitro in the absence of CD47/ SIRPa-interaction. Biochem. Biophys. Res. Commun. 2007; 352(2): 444-8.
  89. Hobolt-Pedersen A.S., Delaisse J.N., Soe K. Osteoclast Fusion is Based on Heterogeneity Between Fusion Partners. Calcif. Tissue Int. 2014; 95(1): 73-82.
  90. M0ller A.M., Delaisse J.M., S0e K. Osteoclast Fusion: Time-Lapse Reveals Involvement of CD47 and Syncytin-1 at Different Stages of Nuclearity. J. Cell. Physiol. 2017; 232(6): 1396-403.
  91. Miyamoto T. STATs and macrophage fusion. JAKSTAT 2013; 2(3): e24777. doi: 10.4161/jkst.24777.
  92. Takeda Y., He P., Tachibana I. et al. Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J. Biol. Chem. 2008; 283(38): 26089-97.
  93. Parthasarathy V., Martin F., Higginbottom A. et al. Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology 2009; 127(2): 237-48.
  94. Shi D., Reinecke H., Murry C.E. et al. Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells. Blood 2004; 104(1): 290-4.
  95. Körbling M., Katz R.L., Khanna A. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N. Eng. J. Med. 2002; 346(10): 738-46.
  96. de Jong J.H., Rodermond H.M., Zimberlin C.D. et al. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis. Sci. Rep. 2012; 2: 271. doi: 10.1038/srep00271.
  97. Skinner A.M., Grompe M., Kurre P. Intra-hematopoietic cell fusion as a source of somatic variation in the hematopoietic system. J. Cell Sci. 2012; 125(12): 2837-43.
  98. Nygren J.M., Liuba K., Breitbach M. et al. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat. Cell Biol. 2008; 10(5): 584-92.
  99. Wang X., Willenbring H., Akkari Y. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003; 422(6934): 897-901.
  100. Gentric G., Desdouets C. Polyploidization in liver tissue. Am. J. Pathol. 2014; 184(2): 322-31.
  101. Willenbring H., Bailey A.S., Foster M. et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 2004; 10(7): 744-8.
  102. Masson S., Harrison D.J., Plevris J.N. et al. Potential of Hematopoietic Stem Cell Therapy in Hepatology: A Critical Review. Stem Cells 2004; 22(6): 897-907.
  103. Weimann J.M., Johansson C.B., Trejo A. et al. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 2003; 5(11): 959-66.
  104. Davies P.S., Powell A.E., Swain J.R. et al. Inflammation and Proliferation Act Together to Mediate Intestinal Cell Fusion. PLoS One 2009; 4(8): e6530. doi: 10.1371/journal.pone.0006530.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies