Direct modification of cells using polycation-stabilized silver nanoparticles



Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Here we report the surface functionalization of human lung carcinoma cells A549 with polyallylamine hydrochloride-stabilized silver nanoparticles. We investigated the time and dose-dependent effects of AgPAH on cells, the influence of functionalization on the viability of cells, monolayer formation and proliferative activity Safe concentration of silver nanoparticles stabilized with polyallylamine hydrochloride for A549 cells were determined The differential effects of silver nanoparticles stabilized with polyallylamine hydrochloride on cell function and organelles were revealed

Texto integral

Acesso é fechado

Sobre autores

E. Tarasova

Kazan (Volga region) Federal University

Email: evgenechka1885@gmail.com

E. Naumenko

Kazan (Volga region) Federal University

E. Rozhina

Kazan (Volga region) Federal University

R. Fakhrullin

Kazan (Volga region) Federal University

Bibliografia

  1. Zhang L., Gu F.X., Chan J. M. et al. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 2008; 83: 761-9.
  2. Kreuter J., Gelperina S. Use of Nanoparticles for Cerebral Cancer. Tumori. 2008; 94: 271-7.
  3. Yoon K.Y., Hoon B. J., Park J. H. et al. Susceptibility Constants of Escherichia coli and Bacillus subtilis to Silver and Copper Nanoparticles. Sci. Total Environ. 2007; 373: 572-5.
  4. Tan W.B., Jiang S., Zhang Y. Quantum-Dot Based Nanoparticles for Targeted Silencing of HER2/neu Gene via RNA Interference. Biomaterials 2007; 28: 1565-71.
  5. Su J., Zhang J., Liu L. et al. Exploring Feasibility of Multicolored CdTe Quantum Dots for In Vitro and In Vivo Fluorescent Imaging. Nanosci. Nanotechnol. 2008; 8: 1174-7.
  6. Tolaymat T.M., Badawy A.M., Genaidy A. et al. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peerreviewed scientific papers Sci Total Environ 2010; 408: 999-1006.
  7. Shutava T.G., Pattekari P.P., Arapov K.A. et al. Architectural layer-by-layer assembly of drug nanocapsules with PEGylated polyelectrolytes. Soft Matter. 2012; 8: 9418-27.
  8. Lvov Y., Pattekari P., Shutava T. Making aqueous nanocolloids from low soluble materials: LbL shells on nanocores. In Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials 2012: 151-170
  9. Diaspro A., Silvano D., Krol S. et al. Single living cell encapsulation in nanoorganized polyelectrolyte shells. Langmuir. 2002; 18: 5047-50
  10. Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Drug Deliv. Rev. 2011; 63: 772-88.
  11. Fakhrullin R.F., Lvov Y.M. ''Face-lifting'' and ''make-up'' for microorganisms: layer-by-layer polyelectrolyte nanocoating ACS Nano 2012; 6: 4557-64.
  12. Park S.J., Kim S., Lee S. et al. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. Am. Chem. Soc. 2000; 122: 8581-2.
  13. Milczarek G., Motylenko M., Modrzejewska-Sikorska A. et al. Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate. RSC Adv. 2014; 4: 52476-84.
  14. Lok C.N., Ho C.M., Chen R. et al. Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles Proteome Res 2006; 5: 916-24.
  15. Gogoi S.K., Gopinath P., Paul A. et al. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir. 2006; 22: 9322-8
  16. Wright J.B., Lam K., Hansen D. et al. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control. 1999; 27: 344-50
  17. Wright J.B., Lam K., Burrell R.E. Wound management in an era of increasing bacterial antibiotic resistance: a role for topical silver treatment. Am. J. Infect. Control. 1998; 26: 572-7.
  18. Suresh A.K., Pelletier D.A., Wang W. et al. Silver nanocrystallites: biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ. Sci. Technol. 2010; 44: 5210-5.
  19. Konnova S.A., Danilushkina A.A., Fakhrullina G.I. et al. Silver nanoparticles-coated "cyborg" microorganisms: rapid assembly of polymer-stabilised nanoparticles on microbial cells. RSC Adv. 2015; 5: 13530-7.
  20. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and citotoxicity assays Immunol Methods 1983; 65: 55-63
  21. Clothier R., Starzec G., Pradel L. et al. The prediction of human skin responses by using the combined in vitro fluorescein leakage Alamar Blue (Resazurin) assay. ATLA 2002; 30: 493-504.
  22. Borenfreund E., Puerner J.A. Toxicity determined in vitro by morfological alterations and neutral red adsorption. Toxicol. Lett. 1985; 24: 119-24.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Eco-Vector, 2015



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies