Physiological role of hydrogen sulfide in nervous system



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review provides modern data and the results of author's research on physiological and pathological roles of the new gasotransmitter - hydrogen sulfide (H2S) in the central and peripheral nervous system. H2S is synthesized by three enzymes: cystathionine p-syntase, cystathionine y-lyase and 3-mercaptopiruvat sulftransferase/cysteine aminotransferase. In nerve systems the main source of synthesis H2S is cystathionine p-syntase and high level enzyme expression observed in the embryonic and early postnatal period of organism development that is apparently necessary for the growth and maturation of neural networks for the protection of neurons and astrocytes in the conditions of oxidative stress. Cystathionine p-syntase gene mutation in humans leads to an autosomal recessive metabolic diseases, mental dysfunction, vascular lesions and hyperhomocysteinemia. The aim of this review is to present the currents data about the effects of H2S on ion channels, transmitter release, its participation in the pathology of various neurodegenerative diseases, as well as its antioxidative and neuroprotective action in central and peripheral nervous systems.

Full Text

Restricted Access

About the authors

A. V Yakovlev

Kazan (Volga region) Federal University

G. F Sitdikova

Kazan (Volga region) Federal University

References

  1. Reiffenstein R.J., Hulbert W.C., Roth S.H. Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol. 1992; 32; 109-34.
  2. Savage C., Gould D.H. Determination of sulfides in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J. Chromatograph. 1990; 526: 540-5.
  3. Zhou C.F., Tang X.Q. Hydrogen sulfide and nervous system regulation. Chin. Med. J. (Engl). 2011; 124(21): 3576-82.
  4. Wang R. Physiological implications of hydrogen sulfide: A Whiff exploration that blossomed. Physiological reviews. 2012; 92(2): 791-896.
  5. Wang R. Gasotransmitters: growing pains and joys. Trends Biochem. Sci. 2014; 39(5): 227-32.
  6. Ситдикова Г.Ф., Зефиров А.Л. Газообразные посредники в нервной системе. Росс. Физиол. журнал им. И.М. Сеченова. 2006; 97(7): 872-882.
  7. Ситдикова Г.Ф., Зефиров А.Л Сероводород: от канализаций Парижа к сигнальной молекуле. Природа. 2010; 9:29-37.
  8. Sitdikova G.F., Weiger T.M., Hermann A. Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch - Eur. J. Physiol. 2010; 459:389-97.
  9. Ситдикова Г.Ф., Яковлев А.В., Одношивкина Ю.Г. и соавт. Влияние сероводорода на процессы экзо- и эндоцитоза синаптических везикул в двигательном нервном окончании лягушки. Нейрохимия. 2011; 28(4): 1-7.
  10. Khaertdinov N.N., Ahmetshina D.R., Zefirov A.L. et al. Hydrogen Sulfide in Regulation of Frog Myocardium Contractility. Biochemistry (Moscow). 2013; 7(1): 52-57.
  11. Хаертдинов Н.Н., Герасимова Е.В., Ситдикова Г.Ф. АТФ-зависимые К+-каналы как мишень действия сероводорода в миокарде лягушки. Естественные науки. 2012; 1(38): 210-213.
  12. Шафигуллин М.У., Зефиров Р.А., Сабируллина Г.И., и соавт. Эффекты донора сероводорода на спонтанную сократительную активность желудка и тощей кишки крысы. БЭБИМ. 2014; 157(3): 275-279.
  13. Sitdikova G.F., Zefirov A.L. Gasotransmitters in Regulation of Neuromuscular Transmission. In: Hermann A., Sitdikova G., Weiger T., editors. Gasotransmitters: Physiology and Pathophysiology. Springer; 2012, p 139-161.
  14. Яковлев А.В., Ситдикова Г.Ф., Зефиров А.Л. Внутриклеточные пресинаптические механизмы эффектов оксида азота (II) в нервно-мышечном соединении лягушки. Нейрохимия. 2005; 22(1): 81-7.
  15. Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neuroscience. 1996; 16: 1066-71.
  16. Kimura H., Nagai Y., Umemura K. et al. Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal. 2005; 7: 795-803.
  17. Shibuya N., Tanaka M., Yoshida M. et al. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 2009; 11: 703-14.
  18. Kombian S.B., Reiffenstein R.J., Colmers W.F. The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro. J. Neurophysiol. 1993; 70: 81-96.
  19. Gerasimova E.V., Sitdikova G.F., Zefirov A.L. Hydrogen sulfide as an endogenous modulator of mediator release in the frog neuromuscular synapse. J. Neurochemical. 2008; 2(1): 120-6.
  20. Sitdikova G.F., Gersimova E.V., Khaertdinov N.N. et al. Role of cyclic nucleotides in effects of hydrogen sulfide on mediator release in frog neuromuscular junction. J. Neurochemical. 2009; 3(4): 282-7.
  21. Sitdikova G.F., Yakovlev A.V., Odnoshivkina Y.G. et al. Effects of Hydrogen sulfide on the exo- and endocytosis of synaptic vesicles in frog motor nerve endings. J. Neurochemical. 2011; 5(4): 245-50.
  22. Герасимова Е.В., Яковлева О.В., Зефиров А.Л. и соавт. Роль рианодиновых рецепторов в эффектах сероводорода на освобождение медиатора из двигательного нервного окончания лягушки. БЭБИМ. 2013; 155(1): 14-16.
  23. Mitrukhina O.B., Yakovlev, A.V., Sitdikova G.F. The Effects of Hydrogen Sulfide on the Processes of Exo- and Endocytosis of Synaptic Vesicles in the Mouse Motor Nerve Endings. Biochemistry (Moscow). 2013; 7(2): 170-173.
  24. Герасимова Е.В., Ситдикова Г.Ф., Зефиров А.Л. Сероводород как эндогенный модулятор освобождения медиатора в нервномышечном синапсе лягушки. Нейрохимия. 2008; 25(2): 138-45.
  25. Dello Russo C., Tringali G., Ragazzoni E. et al. Evidence that hydrogen sulfide can modulate hypathalamo-pituitary-adrenal axis function: in vitro and in vivo studies in the rat. J. Neuroendocrinol. 2000; 12: 225-33.
  26. Nagai Y., Tsugane M., Oka J. et al. Hydrogen sulfide induces calcium waves in astrocytes. FASEB. 2004; 18: 557-9.
  27. Eto K., Ogasawara M., Umemura K. et al. Hydrogen sulfide is produced in response to neuronal excitation. J. Neuroscience. 2002; 22(9): 3386-91.
  28. Lu, Y., O'Dowd B.F., Orrego H., Israel Y. Cloning and nucleotide sequence of human liver cDNA encoding for cystathionine-y-lyase. Bioch. Bio. Res. Com. 1992; 189; 749-758.
  29. Van der Molen, E.F., Hiipakka M.J., van Lith-Zanders G. Homocysteine metabolism in endothelial cells of a patient homozygous for cystathionine beta-synthase (CS) deficiency. Thromb. Haemost. 1997; 78: 827-833.
  30. Distrutti E., Sediari L., Mencarelli A. Evidence that hydrogen sulfide exerts antinociceptive effects in thegastrointestinal tract by activating K(ATP) channels. J. Pharmacol. Exp. Ther. 2006; 316: 325-35.
  31. Gadalla J., Moataz M., Snyder S.H. Hydrogen Sulfide as a Gasotransmitter. J. Neurochemistry. 2010; 113(1): 14-26.
  32. Morikawa T., Kajimura M., Nakamura T. et al. Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc. Natl. Acad. Sci. USA. 2012; 109: 1293-8.
  33. Shibuya N., Kimura H. Production of hydrogen sulfide from D-cysteine and its therapeutic potential. Frontiers in Endocrinology. 2013; 4: 87-93.
  34. Nagahara N., Ito T., Kitamura H. et al. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem. and Cell Biology. 1998; 110(3): 243-250.
  35. Shibuya N., Koike S., Tanaka M., et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nature Communications. 2013; 4: 1366.
  36. Kimura H. Hydrogen Sulfide: From Brain to Gut. Antiox. Redox Signal. 2010; 12(9): 1111-23.
  37. Shen W., McGath M.K., Evande R. et al. A Continuous Spectrophotometric Assay for Human Cystathionine Beta-Synthase. Analytical biochemistry. 2005; 342(1): 103-10.
  38. Robert K., Vialard F., Thiery E. et al. Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J. Histochem. Cytochem. 2003; 51: 363-71.
  39. Obeid R., McCaddon A., Herrmann W. The Role of Hyperhomocysteinemia and B-Vitamin Deficiency in Neurological and Psychiatric Diseases. Clinical Chem. Lab. Med. 2007; 45(12): 1590-1606.
  40. Bruintjes J.J., Henning R.H., Douwenga W., van der Zee E.A. Hippocampal Cystathionine Beta Synthase in Young and Aged Mice. Neuroscience letters. 2014; 563: 135-39.
  41. Enokido Y., Suzuki E., Iwasawa K. et al. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB. 2005; 19(13): 1854-56.
  42. Lee M., Schwab C., Yu S. et al. Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol. Aging. 2009; 30: 1523-34.
  43. Vitvitsky V., Thomas M., Ghorpade A. et al. A functional transsulfuration pathway in the brain links to glutathione homeostasis. J. Biol. Chem. 2006; 281: 35785-93.
  44. Rosenquist T.H., Finnell R.H. Genes, folate and homocysteine in embryonic development. Proc. Nutr. Soc. 2001; 60: 53-61.
  45. Fonnum F., Lock E.A. Cerebellum as a target for toxic substances. Toxicol. Lett. 2000; 112-113: 9-16.
  46. Sajdel-Sulkowska E.M., Xu M., Koibuchi N. Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum. 2009; 8: 366-72.
  47. Zhao W., Ndisang J.F., Wang R. The modulation of endogenous production of H2S in rat tissues. Can. J. Physiol. Pharmacol. 2003; 81: 848-53.
  48. Kimura H. Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem. International. 2013; 63(5): 492-7.
  49. Greiner R., Palinkas Z., Basell K. et al. Polysulfides link H2S to protein thiol oxidation. Antioxid. Redox Signaling. 2013; 19(15): 1749-65.
  50. Ishigami M., Hiraki K., Umemura K. et al. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid. Redox Signal. 2009; 11: 205-14.
  51. Kimura M. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem. Biophys. Res. Commun. 2000; 267: 129-33.
  52. Kimura H. Hydrogen sulfide as a neuromodulator. Mol. Neurobiol. 2002; 26: 13-19.
  53. Tang G., Wu L., Wang R. Interaction of Hydrogen Sulfide with Ion Channels Clin. Experim. Pharm. Physiol. 2010; 37(7): 753-63.
  54. Kaila K. Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol. 1994; 42: 489-537.
  55. Han Y., Qin J., Chang X. et al. Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem. Biophys. Res. Commun. 2005; 327: 431-36.
  56. Bading H., Ginty D., Greenberg M. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science. 1993; 260: 181-6.
  57. Dani J.W., Chernjavsky A., Smith S.J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 1992; 8; 429-40.
  58. Parri H.R., Gould T.M., Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 2001; 4: 803-812.
  59. Nagai Y., Tsugane M., Oka J., Kimura H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB. 2004; 18: 557-9.
  60. Garcia-Bereguiain M., Samhan-Arias A., Martin-Romero F., et al. Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid. Redox Signal. 2008; 10: 31-42.
  61. Austgen J.R., Hermann G.E., Dantzler H.A. et al. Hydrogen Sulfide Augments Synaptic Neurotransmission in the Nucleus of the Solitary Tract. J. Neurophysiol. 2011; 106(4): 1822-32.
  62. Kawabata A., Ishiki T., Nagasawa K. et al. Hydrogen sulfide as a novel nociceptive messenger. Pain. 2007; 132: 74-81.
  63. Gutierrez-Martin Y., Martin-Romero F.J., Henao F., et al. Alteration of cytosolic free calcium homeostasis by SIN-1: High sensitivity of L-type Ca2 + channels to extracellular oxidative / nitrosative stress in cerebellar granule cells. J. Neurochem. 2005; 92: 973-89.
  64. Kombian B., Reiffenstein R.J., Colmers F. The Actions of Hydrogen Sulfide on Dorsal Raphe Serotonergic Neurons In Vitro. J. Neurophysiol. 1993; 70(I): 81-96.
  65. Chen L., Zhang J., Ding Y., Li H. et al. K(ATP) channels of parafacial respiratory group (pFRG) neurons are involved in H2S-mediated central inhibition of respiratory rhythm in medullary slices of neonatal rats. Brain Res. 2013; 1527: 141-8.
  66. Sitdikova G.F., Fuchs R., Kainz V., et al. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S). Front. Physiol. 2014; 5: 431.
  67. Telezhkin V., Brazier S.P., Cayzac S. et al. Hydrogen sulfide inhibits human BK(Ca) channels. Adv. Exp. Med. Biol. 2009; 648: 65-72.
  68. Hu, S., Xu, W., Miao, X. et al. Sensitization of sodium channels by cystathionine p-synthetase activation in colon sensory neurons in adult rats with neonatal maternal deprivation. Exper. Neurology. 2013; 248: 275-85.
  69. Xu G.Y., Winston J.H., Shenoy M. et al. The endogenous hydrogen sulfide producing enzyme cystathionine-beta synthase contributes to visceral hypersensitivity in a rat model of irritable bowel syndrome. Mol. Pain. 2009; 5: 44.
  70. Warenycia M., Smith K., Blashko C. et al. Monoamine oxidase inhibition as a sequel of hydrogen sulfide intoxication: increases in brain catecholamine and 5-hydroxytryptamine levels. Arch. Toxicol. 1989; 63: 131-136.
  71. Roth S., Skrajny B., Reiffenstein R. Alteration of the morphology and neurochemistry of the developing mammalian nervous system by hydrogen sulfide. Clin. Exp. Pharmacol. Physiol. 1995; 2: 379-380.
  72. Skrajny B., Hannah R., Roth S. Low concentrations of hydrogen sulfide alter monoamine levels in the developing rat central nervous system. Can. J. Physiol. Pharmacol. 1992; 70: 1515-18.
  73. Вараксин А.А., Пущина Е.В. Значение сероводорода в регуляции функции органов. Тихоокеанский медицинский журнал. 2012; 2: 27-34.
  74. Patacchini R., Santicioli P., Giuliani S. et al. Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br. J. Pharmacol. 2004; 142: 31-34.
  75. LoPachin, R.M., Barbe D.S. Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants. Toxic. sciences. 2006; 94(2): 240-255.
  76. Partlo L., Sainsbury R., Roth S. Effects of repeated hydrogen sulfide tH2S) exposure on learning and memory in the adult rat. Neurotoxicology. 2001; 22: 177-89.
  77. Solnyshkova T.B. Demyelination of nerve fibers in the central nervous system caused by chronic exposure to natural hydrogen sulfide-containing gas. Bull. of Experimental Biology and Medicine. 2003; 136: 328-32.
  78. Kimura Y., Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB. 2004; 18(10); 1165-7.
  79. Whiteman M., Cheung N., Zhu Y. et al. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem. Biophy. Res. Commun. 2005; 326: 794-798.
  80. Tan S., Schubert D., Maher P. Oxytosis: A novel form of programmed cell death. Curr. Top. Med. Chem. 2001; 1: 497-506.
  81. Cheng-fang, Z., Xiao-quing T. Hydrogen Sulfide and nervous system regulation. Chinese medical journal. 2011; 124: 3576-82.
  82. Kimura Y., Dargusch R., Schubert D. et al. Hydrogen sulfide protects HT neuronal cells from oxidative stress. Antioxid. Redox. Signal. 2006; 8: 661-670.
  83. Vaux D.L., Korsmeyer S.J. Cell death in development. Cell. 1999; 96: 245-254.
  84. Guang-Dong Y., Wang R. H2S and Cellular Proliferation and Apoptosis. Acta pharmacologica Sinica. 2007; 59(2): 133-40.
  85. Qu K., Chen C.P., Halliwell B. et al. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke. 2006; 37: 889-893.
  86. Lowicka E., Beltowski J., Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacol. Rep. 2007; 59: 4.
  87. Wang, R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB. 2002; 16:17921298.
  88. Skovby F., Gaustadnes M., Mudd H. A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency, Mol. Gen. and Metabol. 2010; 99; 1-3.
  89. Belardinelli M.C., Chabli A., Chadefaux-Vekemans B. et al. Urinary sulfur compounds in Down syndrome. Clin. Chem. 2001; 47: 1500-1.
  90. Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids. 2004; 26: 243-254

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies