Umbilical cord blood cells in the treatment of patients with schizophrenia in remission



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Schizophrenia is one of the most severe chronic relapsing mental diseases that significantly affect the level of social adaptation and quality of life of patients, often leads to their disability. Despite the success of modern psychopharmacology, achieving sustainable remission in schizophrenia remains a difficult task. The purpose of the study were the assessments of the safety and tolerability of intravenous administration of allogeneic AB0/ Rh-compatible mononuclear cord blood cells, as well as to study changes in cognitive performance in patients with schizophrenia in remission after treatment with umbilical cord blood cells. The study involved 30 patients with schizophrenia (men; average age 32,4 ± 9,7 years) in a state of hypochondria remission with a predominance of cognitive disorders against the background of prominent negative changes (F20.01-F20.04 according to ICD-1 0). Design is a prospective, placebo-controlled trial of efficiency and safety. The study consisted of 2 phases. In the pilot phase (3 months), the tolerability of a single cryopreserved concentrate of human cord blood injection containing mononuclear cells in a dose of 260± 20 million cells was estimated. The duration and severity of the effect was compared with placebo. In the clinical phase (48 months), patients received 4 injections of cord blood cell suspension in the same dose with intervals of 14 ± 3 days. The efficacy and safety of exposure were assessed using psychopathological, psychometric (scale of positive and negative symptoms of schizophrenia - PANSS) and psychological (The MATRIX Consensus Cognitive Battery) methods. The obtained results allow to conclude that the influence of human cord blood mononuclear cells on cognitive functions is realized due to the expressed metabolic (nootropic) and psychostimulating effects and restoration of normal neurotransmitters ratio. The effects are manifested in the form of activation of intellectual activity, acceleration of information processing, correction of memory functions, increase in the level of attention and vigilance, as well as a noticeable increase in "social intelligence” and, as a result, improvement in the quality of life. The effect of applying cord blood cells to enhance cognitive functions is characterized by resistance and duration of at least 4 years.

Full Text

Restricted Access

About the authors

Ya. V Morozova

National Medical Research Center of Cardiology; Cryocenter, LLC

S. M Radaev

NextGene, LLC

Email: radaevsm@gmail.com

E. I Voronova

Mental Health Research Center; I.M. Sechenov First Moscow State Medical University

D. A Emelina

V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology

References

  1. Алфимова М.В., Уварова Л.Г., Трубников В.И. Электроэнцефалография и познавательные процессы при шизофрении. Журнал неврологии и психиатрии 1998; 98: 11.
  2. Критская В.П., Мелешко Т.К., Борисова Д.Ю. Прогностические критерии социально-трудовой адаптации подростков с формирующимся шизоидным расстройством личности (патопсихологическое исследование). Психиатрия. Научно-практический журнал 2007; 3: 34-9.
  3. Crow T.J., Done D.J., Sacker A. Childhood precursors of psychosis as clues to its evolutionary origins. European Archives of Psychiatry and Clinical Neuroscience 1995; 173(4): 61-9.
  4. Charlson F.J., Ferrari A.J., Santomauro D.F. et al. Global Epidemiology and Burden of Schizophrenia: Findings from the Global Burden of Disease Study 2016. Schizophr. Bull. 2018; 44: 1195-203.
  5. Fish B. Infants at Risk for Schizophrenia: Sequelae of a Genetic Neurointegrative Defect. Archives of General Psychiatry 1992; 49(3): 221.
  6. Hans S.L., Marcus J., Nuechterlein K.H. et al. Neurobehavioral Deficits at Adolescence in Children at Risk for Schizophrenia. Archives of General Psychiatry 1999; 56(8): 741.
  7. Hirjak D., Meyer-Lindenberg A., Kubera K.M. et al. Motor dysfunction as research domain in the period preceding manifest schizophrenia: A systematic review. Neurosci. Biobehav. Rev. 2018; 87: 87-105.
  8. Zilles D., Jung R., Gruber E. et al. Differential working memory performance as support for the Kraepelinian dichotomy between schizophrenia and bipolar disorder? An experimental neuropsychological study using circuit-specific working memory tasks. World J. Biol. Psychiatry 2013; 14: 258-67.
  9. Nenadic I., Maitra R., Dietzek M. et al. Prefrontal gyrification in psychotic bipolar I. disorder vs. schizophrenia. J. Affect. Disord. 2015; 185: 104-7.
  10. Zilles K., Palomero-Gallagher N., Amunts K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 2013; 36: 275-84.
  11. Green M.F. What are the functional consequences of neurocogni-tive deficits in schizophrenia? Am.J. Psychiatry 1996; 153: 321-30.
  12. Green M.F., Olivier B., Crawley J.N. et al. Social cognition in schizophrenia: recommendations from the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophr. Bull. 2005; 31: 882-7.
  13. Green M.F., Penn D.L., Bentall R. et al. Social Cognition in Schizophrenia: An NIMH Workshop on Definitions, Assessment, and Research Opportunities. Schizophrenia Bulletin 2008; 34(6): 1211-20.
  14. Зейгарник Б.В. Патопсихология. изд. 2-е, переработанное и дополненное. Москва: Издательство Московского университета; 1986.
  15. Мелешко-Брушлинская Т., Критская В. Патопсихология шизофрении. Москва: Litres; 2018.
  16. Saykin A.J., Shtasel D.L., Gur R.E. et al. Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch. Gen. Psychiatry 1994; 51: 124-31.
  17. Spaulding W.D., Sullivan M., Weiler M. et al. Changing cognitive functioning in rehabilitation of schizophrenia. Acta Psychiatr. Scand. Suppl. 1994; 384: 116-24.
  18. Bergman A.J., Harvey P.D., Roitman S.L. et al. Verbal learning and memory in schizotypal personality disorder. Schizophr. Bull. 1998; 24: 635-41.
  19. Harvey P.D., Parrella M., White L. et al. Convergence of cognitive and adaptive decline in late-life schizophrenia. Schizophrenia Research 1 999; 35(1): 77-84.
  20. Kane J. The treatment of schizophrenia in the next decades. European Neuropsychopharmacology 2000; 10 Suppl 3: 107.
  21. Gold J.M., Harvey P.D. Cognitive deficits in schizophrenia. Psychiatr. Clin. North. Am. 1993; 16: 295-312.
  22. Gallhofer B., Bauer U., Lis S. et al. Cognitive dysfunction in schizophrenia: Comparison of treatment with a novel atypical antipsychotic agent versus conventional neuroleptic drugs. European Neuropsychopharmacology 1996; 6 Suppl 2: 13-20.
  23. Stratta P., Daneluzzo E., Bustini M. et al. Schizophrenic deficits in the processing of context. Archives of general psychiatry 1998; 55(2): 186-8.
  24. Weickert T.W., Goldberg T.E., Gold J.M. et al. Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch. Gen. Psychiatry 2000; 57: 907-13.
  25. Breier A. Cognitive deficit in schizophrenia and its neurochemical basis. Br.J. Psychiatry 1999; 174 Suppl 37: 16-8.
  26. Goldberg T.E., Gold J.M., Coppola R. et al. Unnatural practices, unspeakable actions: a study of delayed auditory feedback in schizophrenia. Am.J. Psychiatry 1997; 154: 858-60.
  27. Sharma T. Cognitive effects of conventional and atypical antipsychotics in schizophrenia. Br.J. Psychiatry 1999; 174 Suppl 38: 44-51.
  28. Mueser K.T., Bond G.R. Psychosocial treatment approaches for schizophrenia. Current Opinion in Psychiatry 2000; 13(1): 27-35.
  29. Мосолов С.Н. Резистентность к психофармакотерапии и методы ее преодоления. Психиатрия и психофармакотерапия 2002; 4: 132-6.
  30. Смулевич А.Б. Неманифестные этапы шизофрении: психопатология и терапия. Журн. невропат. и психиатр. им. С.С. Корсакова 2005; 5: 4-10.
  31. Галант И.Б. О лечении шизофрении плацентарной кровью. Советская психоневрология 1935; 1: 63-70.
  32. Gnecchi M., Zhang Zh., Ni A. et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 2008; 103(11): 1204-19.
  33. Baraniak P.R., McDevitt T.C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 2010; 5(1): 121-43.
  34. Ratajczak M.Z., Kucia M., Jadczyk T. et al. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 2012; 26: 1166-73.
  35. Maacha S., Sidahmed H., Jacob S. et al. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells International 2020; 2020, https://doi.org/10.1155/2020/4356359.
  36. Мельникова Е.В., Горяев А.А., Савкина М.В. и др. Международный опыт нормативно-правового регулирования препаратов, содержащих жизнеспособные клетки человека. БИОпрепараты. Профилактика, диагностика, лечение 2018; 3: 150-60.
  37. Romanov Y.A., Balashova E.E., Volgina N.E. et al. Optimized Protocol for Isolation of Multipotent Mesenchymal Stromal Cells from Human Umbilical Cord. Bull. Exp. Biol. Med. 2015; 160: 148-54.
  38. Riordan N.H., Chan K., Marleau A. et al. Cord blood in regenerative medicine: do we need immune suppression? Journal of Translational Medicine 2007; 5: 8.
  39. Matsumoto T., Mugishima H. Non-hematopoietic stem cells in umbilical cord blood. International Journal of Stem Cells 2009; 2(2): 83-9.
  40. Neuhoff S., Moers J., Rieks M. et al. Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Experimental Hematology 2007; 35(7): 1119-31.
  41. Curtis M.A., Eriksson P.S., Faull R.L.M. Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal ganglia. Clinical and Experimental Pharmacology and Physiology 2007; 34(5-6): 528-32.
  42. Bath K.G., Lee F.S. Neurotrophic factor control of adult SVZ neurogenesis. Developmental Neurobiology 2010; 70: 339-49.
  43. Kumar A., Pareek V., Faiq M.A. et al. Regulatory role of NGFs in neu-rocognitive functions. Rev. Neurosci. 2017; 28: 649-73.
  44. Nuechterlein K.H., Green M.F., Kern R.S. et al. The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. Am.J. Psychiatry 2008; 165(2): 203-13.
  45. Rubinstein P., Dobrila L., Rosenfield R.E. et al. Processing and cryo-preservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. PNAS USA 1995; 92(22): 10119-22.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies