Induced pluripotent stem cells as a model for studying human diseases



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Induced pluripotent stem cells are able for infinite selfrenewal
and differentiation into all types of cells. The review is
focused on modern methods and approaches to create models
of human diseases based on human induced pluripotent stem
cells, recent advances and prospects in this area, as well
as the application of such models to study human diseases.

About the authors

E D Nekrasov

Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow

Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow

M A Lagarkova

Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow

Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow

S L Kiselev

National Research Centre «Kurchatov Institute», Moscow

National Research Centre «Kurchatov Institute», Moscow

References

  1. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154-6.
  2. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS USA 1981; 78: 7634-8.
  3. Misra R.P., Bronson S.K., Xiao Q. et al. Generation of singlecopy transgenic mouse embryos directly from ES cells by tetraploid embryo complementation. BMC Biotechnol. 2001; 1: 12.
  4. Eggan K., Akutsu H., Loring J. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. PNAS USA 2001; 98(11): 6209-14.
  5. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
  6. Takahashi K., Tanabe K., Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
  7. Yu J., Vodyanik M.A., Smuga-Otto K. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
  8. Elsdale T.R., Gurdon J.B., Fischberg M. A description of the technique for nuclear transplantation in Xenopus laevis. J. Embryol. Exp. Morphol. 1960; 8: 437-44.
  9. Fischberg M., Gurdon J.B., Elesdale T.R. Nuclear transfer in amphibia and the problem of the potentialities of the nuclei of differentiating tissues. Exp. Cell Res. 1959; Suppl. 6: 161-78.
  10. Campbell K.H., McWhir J., Ritchie W.A., Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996; 380(6569): 64-6.
  11. Serov O., Matveeva N., Kuznetsov S. et al. Embryonic hybrid cells: a powerful tool for studying pluripotency and reprogramming of the differentiated cell chromosomes. An. Acad. Bras. Cienc. 2001; 73(4): 561-8.
  12. Terada N., Hamazaki T., Oka M. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542-5.
  13. Ying Q.Y., Nichols J., Evans E.P., Smith A.G. Changing potency by spontaneous fusion. Nature 2002; 416: 545-8.
  14. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
  15. Maherali N., Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 3(6): 595-605.
  16. Hanna J.H., Saha K., Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 2010; 143(4): 508-25.
  17. Zhao X.Y., Li W., Lv Z. et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009; 461(7260): 86-90.
  18. Saha K., Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 2009; 5(6): 584-95.
  19. Ebert A.D., Yu J., Rose F.F. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009; 457(7227): 277-80.
  20. Aasen T., Raya A., Barrero M.J. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 2008; 26(11): 1276-84.
  21. Lagarkova M.A., Shutova M.V., Bogomazova A.N. et al. Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle 2010; 9(5): 937-46.
  22. Hester M.E., Song S., Miranda C.J. et al. Two factor reprogramming of human neural stem cells into pluripotency. PLoS One 2009; 4(9): e7044.
  23. Ye Z., Zhan H., Mali P. et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 2009; 114(27): 5473-80.
  24. Warren L., Manos P.D., Ahfeldt T. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7(5): 618-30.
  25. Okita K., Matsumura Y., Sato Y. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 2011; 8(5): 409-12.
  26. Chambers S.M., Fasano C.A., Papapetrou E.P. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 2009; 27(3): 275-80.
  27. Dimos J.T., Rodolfa K.T., Niakan K.K. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321(5893): 1218-21.
  28. Soldner F., Hockemeyer D., Beard C. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136(5): 964-77.
  29. Osakada F., Jin Z.B., Hirami Y. et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 2009; 122(Pt 17): 3169-79.
  30. Sullivan G.J., Hay D.C., Park I.H. et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 2010; 51(1): 329-35.
  31. Taura D., Noguchi M., Sone M. et al. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett. 2009; 583(6): 1029-33.
  32. Choi K.D., Yu J., Smuga-Otto K., et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009; 27(3): 559-67.
  33. Maherali N., Ahfeldt T., Rigamonti A. et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 2008; 3(3): 340-5.
  34. World Health Organization. Neurological Disorders: Public Health Challenges. Geneva: World Health Organization; 2006
  35. Wichterle H., Przedborski S. What can pluripotent stem cells teach us about neurodegenerative diseases? Nat. Neurosci. 2010; 13(7): 800-4.
  36. Lee G., Papapetrou E.P., Kim H. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 2009; 461(7262): 402-6.
  37. Brennand K.J., Simone A., Jou J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473(7346): 221-5.
  38. Yang J., Cai J., Zhang Y. et al. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J. Biol. Chem. 2010; 285(51): 40303-11.
  39. Marchetto M.C., Carromeu C., Acab A. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143(4): 527-39.
  40. Ku S., Soragni E., Campau E. et al. Friedreich's ataxia induced pluripotent stem cells model intergenerational GAA-TTC triplet repeat instability. Cell Stem Cell 2010; 7(5): 631-7.
  41. Zhang J., Lian Q., Zhu G. et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 2011; 8(1): 31-45.
  42. Itzhaki I., Maizels L., Huber I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011; 471(7337): 225-9.
  43. Chen L.W., Kuang F., Wei L.C. et al. Potential Application of Induced Pluripotent Stem Cells in Cell Replacement Therapy for Parkinson's Disease. CNS Neurol. Disord. Drug Targets 2011.
  44. Jaenisch R., Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 2003; 33 Suppl: 245-54.
  45. Guilak F., Cohen D.M., Estes B.T. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009; 5(1): 17-26.
  46. Di Giorgio F.P., Boulting G.L., Bobrowicz S., Eggan K.C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 2008; 3(6): 637-48.
  47. Khetani S.R., Bhatia S.N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 2008; 26(1): 120-6.
  48. Yamada K.M., Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007; 130(4): 601-10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies