Model of optical biopacemaker based on integration of photosensitive cardiomyocytes into cardiac culture

Мұқаба


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The methods of cardiac conduction system recovery with the use of reprogrammed cells and biomaterials, which could provide a stable physiological heart rate throughout the lifetime, are currently studied for possible applications in the heart rhythm disorder treatment. The main issue of intramyocardial transplantation is the transplanted cells' survival and electrophysiological connections formation with the recipient cardiomyocytes. In this paper, in search for working approaches for creating an optical biological pacemaker, we studied the effectiveness of various methods of photosensitive cardiac ChR2-HL-1 line cells integration into neonatal rat cardiac monolayers. For the study, two approaches of co-cultivation were selected: isolated cells and clusters integration of the Ch2-HL-1 line in various concentrations into monolayers. The effectiveness of the obtained model pacemaker was evaluated by the following means: registration of excitation waves initiated by optical stimulation, which affected only cells of the Ch2-HL-1 line, was carried out by optical mapping; immunocytochemical analysis methods were used to characterize the morphology of the obtained co-cultures and to assess the degree of the integration of the embedded structures into the monolayer. In the course of the research it was shown that the most effective method of integration of cells in the primary culture is the cluster method: 100 % of samples with clusters, integrated after 6 hours of monolayer cultivation, showed stable generation of excitation waves at physiologically significant external stimulation frequencies, compared with 88 % for specimens with integrated isolated cells at frequencies lower than physiological. Moreover, the samples with the cluster integration method turned out to be much more resistant (100 % in the cluster method and 25 % in the infusion of isolated cells] to sodium channel inhibitor, lidocaine. The efficiency of integration depends on the conditions of cell growth, which is discussed in more detail in the results of the study. The obtained results are applicable in the development of a biological pacemaker.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Balashov

Moscow Institute of Physics and Technology (State University)

A. Nizamieva

Moscow Institute of Physics and Technology (State University); M.F. Vladimirsky Moscow Regional Research and Clinical Institute

V. Tsvelaya

Moscow Institute of Physics and Technology (State University)

K. Agladze

Moscow Institute of Physics and Technology (State University); E.N. Meshalkin National Medical Research Center

Email: agladze.ki@mipt.ru

Әдебиет тізімі

  1. Murphy C., Shelley E., O’Halloran A.M. et al. Failure to control hypercholesterolaemia in the Irish adult population: cross-sectional analysis of the baseline wave of The Irish Longitudinal Study on Ageing (TILDA). Ir. J. Med. Sci. 2017; 186 (4): 1009-17.
  2. Пиданов О.Ю., Богачев-Прокофьев А.В., Елесин Д.А. и др. Тораскопическая аблация для лечения пациентов с изолированной формой фибрилляции предсердий в России. Патология кровообращения и кардиохирургия. 2018; 22 (2): 14-21.
  3. Meyers J.D., Jay P.Y., Rentschler S. Reprogramming the conduction system: Onward toward a biological pacemaker. Trends Cardiovasc. Med. 2016; 26 (1): 14-20.
  4. Rosen M.R., Brink P.R., Cohen I.S. et al. Genes, stem œlls and biological pacemakers. Cardiovasc. Res. 2004; 64 (1):12-23.
  5. Ambrosi C.M., Boyle P.M., Chen K. et al. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability. Sci. Rep. 5. 2015; article number: 17350.
  6. Nussinovitch U Gepstein L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nature biotechnology. 2015 Jul;33(7):750.
  7. Protze S.I., Liu J., Nussinovitch U. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 2017; 35 (1): 56-68.
  8. Arrenberg A.B., Stainier D.Y., Baier H. et al. Optogenetic control of cardiac function. Science. 2010; 330 (6006): 971-74.
  9. Volkov O., Kovalev K., Polovinkin V. et al. Structural insights into ion conduction by channelrhodopsin 2. Science. 2017; 358 (6366): 8862.
  10. Crocini C., Ferrantini C., Coppini R. et al. Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation. Sci. Rep. 6. 2016; article number: 35628.
  11. Zhang F, Wang LP, Boyden ES, Deisseroth K. Channelrhodopsin-2 and optical control of excitable cells. Nature methods 2006; 3(10):785.
  12. Chepeleva, E.V., Balashov, V.A., Dokuchaeva, A.A. et al. Analyis of biological compatibility of polylactide nanofibrous matrix vitalized with cardiac fibroblasts in a porcine model. Genes and Cells 2017; 12(4): 62-68
  13. Чепелева Е.В., Балашов В.А., Докучаева А.А. и др. Исследование биологической совместимости полилактидных нановолоконных матриксов, заселенных фибробластами сердца, в эксперименте на мини-свиньях. Гены и клетки 2017; 12(4]: 62-68
  14. Balashov V., Efimov A., Agapova O. et al. High resolution 3D microscopy study of cardiomyocytes on polymer scaffold nanofibers reveals formation of unusual sheathed structure. Acta Biomaterialia 2018; 68: 214-22.
  15. Sotnichenko A.S., Gubareva E.A. et al. Decellularized rat heart matrix as a basis for creation of tissue engineered heart. Cellular Transplantation & Tissue Engineering 2013; 8(3]: 86-94.
  16. Mao A.S., Shin J.W. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nature materials 2017; 16(2]: 236.
  17. Jia Z., Valiunas V., Lu Z. et al. Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ. Arrhythm. Electrophysiol. 2011; 4 (5]: 753-60.
  18. Boyle P.M., Williams J.C., Ambrosi C.M. et al. A comprehensive multiscale framework for simulating optogenetics in the heart. Nat. Commun. 4. 2013; article number: 2370.
  19. Agladze N.N., Halaidych O.V., et al. Synchronization of excitable cardiac cultures of different origin. Biomater. Sci. 2017; 5 (9]: 1777-85.
  20. Yakushenko A., Gong Z., Maybeck V. et al. On-chip optical stimulation and electrical recording from cells. J. Biomed. Opt. 2013; 18 (11]: 111402.
  21. Claycomb W.C., Lanson N.A., Stallworth B.S. et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. PNAS USA 1998; 95 (6]: 2979-84.
  22. Picone JB, Sperelakis N, Mann Jr JE. Expanded model of the electric field hypothesis for propagation in cardiac muscle. Math. Comp. Model. 1991; 15(8]:17-35.
  23. Orlova Y, Magome N, Liu L, Chen Y, Agladze K. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 2011; 32(24]: 5615-24.
  24. Erofeev I.S., Agladze K.I. Two models of anisotropic propagation of a cardiac excitation wave. JETP Letters 2014; 100(5]: 351-4.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Eco-Vector, 2018



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>