Exosomes: from biology to clinics



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Exosomes are extracellular vesicles with the diameter of 30-120 nm, originating from early endosomes. Exosomes have been actively studied in the last decade, and a great amount of data has appeared on their nature and role in the intercellular transport and signaling both in the normal and pathological conditions. A particular interest to exosomes in the clinical practice emerged after the separation of their circulating fraction from the blood and the study of tumor genetic markers in them became possible (so called “liquid biopsy”). The objective of this review is to familiarize clinical specialists with the fundamentals of exosomes' biology and physiology and with the main achievements on their practical application in the medicine, as a natural drug delivery system, as well as for high-precision, early non-invasive differential diagnostics of diseases.

Full Text

Restricted Access

About the authors

E. M Samoylova

Federal Research Clinical Center, FMBA of Russia

Email: samoyket@gmail.com

V. A Kalsin

Federal Research Clinical Center, FMBA of Russia

V. A Bespalova

Federal Research Clinical Center, FMBA of Russia

V. M Devichensky

Federal Research Clinical Center, FMBA of Russia

V. P Baklaushev

Federal Research Clinical Center, FMBA of Russia

References

  1. Ge R., Tan E., Sharghi-Namini S. et al. Exosomes in Cancer Microenvironment and Beyond: have we Overlooked these Extracellular Messengers? Cancer Microenviron. 2012; 5(3): 323-32.
  2. Pegtel D.M., van de Garde M.D., Middeldorp J.M. Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion. Bioch. Biophys. Acta 2011; 1809(11-12): 715-21.
  3. Chargaff E., West R. The biological significance of the thromboplastic protein of blood. J. Biol. Chem.1946; 166: 189-97.
  4. Wolf P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967; 13: 269-88.
  5. Anderson H.C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. 1969; 41: 59-72.
  6. Johnstone R.M. The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochemistry and Cell Biology 1992; 70(3-4): 179-90.
  7. Valadi H., Ekström K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 2007; 9(6): 654-9.
  8. Yänez-M6 M., Siljander P.R., Andreu Z. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015; 4: 27066.
  9. Thery C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nature Reviews Immunology 2002; 2(8): 569-79.
  10. Gould S.J., Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2013; 2: 20389.
  11. Гомзикова М.О., Гайфуллина Р.Ф., Мустафин И.Г. и др. Мембранные мировезикулы: биологические свойства и участие в патогенезе заболеваний. Клеточная трансплантология и тканевая инженерия 2013; 8(1): 6-11.
  12. Colombo M., Raposo G., Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014; 30: 255-89.
  13. Mathivanan S., Ji H., Simpson R.J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 2010; 73(10): 1907-20.
  14. Escrevente C., Keller S., Altevogt P. et al. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 2011; 11: 108.
  15. Jeppesen D.K., Nawrocki A., Jensen S.G. et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and non-metastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 2014; 14: 699-712.
  16. Ostergaard O., Nielsen C.T., Iversen L.V. et al. Quantitative proteome profiling of normal human circulating microparticles. J. Proteome Res. 2012; 11: 2154-63.
  17. Tauro B.J., Greening D.W., Mathias R.A. et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol. Cell Proteomics 2013; 12: 587-98.
  18. Bang C., Thum T. Exosomes: new players in cell-cell communication. The International Journal of Biochemistry & Cell Biology 2012; 44(11): 2060-4.
  19. Vlassov A.V., Magdaleno S., Setterquist R. et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta: General Subjects 2012; 1820(7): 940-8.
  20. Simons M., Raposo G. Exosomes - vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 2009; 21: 575-81.
  21. Crescitelli R., Lässer C., Szabo T.G. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2013; 2: 20677.
  22. Yoshioka Y., Konishi Y., Kosaka N. et al. Comparative marker analysis of extracellular vesicles in different human cancer types. J. Extracell. Vesicles 2013; 2: 20424.
  23. Staubach S., Schadewaldt P., Wendel U. et al. Differential glycomics of epithelial membrane glycoproteins from urinary exovesicles reveals shifts toward complex-type N-glycosylation in classical galactosemia. J. Proteome Res. 2012; 11: 906-16.
  24. Looze C., Yui D., Leung L. et al. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochem. Biophys. Res. Commun. 2009; 378: 433-8.
  25. Hosseini-Beheshti E., Pham S., Adomat H. et al. Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol. Cell Proteomics 2012; 11: 863-85.
  26. Escrevente C., Grammel N., Kandzia S. et al. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells. PLoS One 2013; 8(10): e78631.
  27. Batista B.S., Eng W.S., Pilobello K.T. et al. Identification of a conserved glycan signature for microvesicles. J. Proteome Res. 2011; 10: 4624-33.
  28. Heijnen H.F., Schiel A.E., Fijnheer R. et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94: 3791-9.
  29. Saunderson S.C., Dunn A.C., Crocker P.R. et al. CD169 mediates the capture of exosomes in spleen and lymph node. Blood 2014; 123: 208-16.
  30. Barres C., Blanc L., Bette-Bobillo P. et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 2010; 115: 696-705.
  31. Liang Y., Eng W.S., Colquhoun D.R. et al. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J. Biol. Chem. 2014; 289: 32526-37.
  32. Menck K., Scharf C., Bleckmann A. et al. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN. J. Mol. Cell Biol. 2015; 7: 143-53.
  33. Kralj-Iglic V. Stability of membranous nanostructures: a possible key mechanism in cancer progression. Int. J. Nanomedicine 2012; 7: 3579-96.
  34. Kralj-Iglic V., Veranic P. Curvature-induced sorting of bilayer membrane constituents and formation of membrane rafts. Adv. Planar Lipid Bilayers Liposomes 2006; 5: 129-49.
  35. Perez-Hernandez D., Gutierrez-Vazquez C., Jorge I. et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 2013; 288: 11649-61.
  36. Andreu Z., Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 2014; 5: 442.
  37. Arkhipov A., Yin Y., Schulten K. Four-scale description of membrane sculpting by BAR domains. Biophys. J. 2008; 95: 2806-21.
  38. Yin Y., Arkhipov A., Schulten K. Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. Structure 2009; 17: 882-92.
  39. Metcalf D., Isaacs A.M. The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. Biochem. Soc. Trans. 2010; 38: 1469-73.
  40. Calzolari A., Raggi C., Deaglio S. et al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J. Cell Sci. 2006; 119: 4486-98.
  41. Gross C., Schmidt-Wolf I.G., Nagaraj S. et al. Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 2003; 8: 348-60.
  42. Macario A.J., Cappello F., Zummo G. et al. Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Ann. NY Acad. Sci. 2010; 1197: 85-93.
  43. Lugini L., Cecchetti S., Huber V. et al. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol. 2012; 189: 2833-42.
  44. Qu Y., Franchi L., Nunez G. et al. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J. Immunol. 2007; 179: 1913-25.
  45. Berda-Haddad Y., Robert S., Salers P. et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1 alpha. PNAS USA 2011; 108: 20684-9.
  46. Zhang H.G., Liu C., Su K. et al. A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. J. Immunol. 2006; 176: 7385-93.
  47. Kandere-Grzybowska K., Letourneau R., Kempuraj D. et al. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J. Immunol. 2003; 171: 4830-6.
  48. Kim H.K., Song K.S., Chung J.H. et al. Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol. 2004; 124: 376-84.
  49. Baj-Krzyworzeka M., Weglarczyk K., Mytar B. et al. Tumour-derived microvesicles contain interleukin-8 and modulate production of chemokines by human monocytes. Anticancer Res. 2011; 31: 1329-35.
  50. Chen T., Guo J., Yang M. et al. Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. J. Immunol. 2011; 186: 2219-28.
  51. Record M., Carayon K., Poirot M. et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 2014; 1841: 108-20.
  52. Baig S., Lim J.Y., Fernandis A.Z. et al. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta 2013; 34: 436-42.
  53. Ratajczak J., Miekus K., Kucia M. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20: 847-56.
  54. Bruno S., Grange C., Collino F. et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 2012; 7: e33115.
  55. Eldh M., Ekstrom K., Valadi H. et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 2010; 5: e15353.
  56. Muller G., Schneider M., Biemer-Daub G. et al. Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal. 2011; 23: 1207-23.
  57. Saurabh S., Vidyarthi A.S., Prasad D. RNA interference: concept to reality in crop improvement. Planta 2014; 239(3): 543564.
  58. Mittelbrunn M., Gutierrez-Vazquez C., Villarroya-Beltri C. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2011; 2: 282.
  59. Hunter M.P., Ismail N., Zhang X. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 2008; 3: e3694.
  60. Collino F., Deregibus M.C., Bruno S. et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 2010; 5: e11803.
  61. Okoye I.S., Coomes S.M., Pelly V.S. et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 2014; 41: 89-103.
  62. Zernecke A., Bidzhekov K., Noels H. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2009; 2: ra81.
  63. Morel L., Regan M., Higashimori H. et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J. Biol. Chem. 2013; 288: 7105-16.
  64. Forterre A., Jalabert A., Chikh K. et al. Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle 2014; 13: 78-89.
  65. Xu J.F., Yang G.H., Pan X.H. et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 2014; 9: e114627.
  66. Santonocito M., Vento M., Guglielmino M.R. et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil. Steril. 2014; 102: 1751-61.
  67. Villarroya-Beltri C., Gutierrez-Vazquez C., Sanchez-Cabo F. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 2013; 4: 2980.
  68. Bolukbasi M.F., Mizrak A., Ozdener G.B. et al. miR-1289 and “Zipcode”-like Sequence Enrich mRNAs in Microvesicles. Mol. Ther. Nucleic Acids 2012; 1: e10.
  69. Balaj L., Lessard R., Dai L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2011; 2: 180.
  70. Guescini M., Genedani S., Stocchi V. et al. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. 2010; 117: 1-4.
  71. Thakur B.K., Zhang H., Becker A. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014; 24: 766-9.
  72. Waldenstrom A., Genneback N., Hellman U. et al. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 2012; 7: e34653.
  73. Lee T.H., Chennakrishnaiah S., Audemard E. et al. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem. Biophys. Res. Commun. 2014; 451: 295-301.
  74. Mulcahy L.A., Pink R.C., Carter D.R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 2014; 3.
  75. Hemler M.E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 2005; 6: 801-11.
  76. Prada I., Meldolesi J. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets. Int. J. Mol. Sci. 2016; 17(8): 1296
  77. Turturici G., Tinnirello R., Sconzo G. et al. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. American Journal of Physiology - Cell Physiology 2014; 306(7): C621-33.
  78. Rubinstein E., Ziyyat A., Prenant M. et al. Reduced fertility of female mice lacking CD81. Dev. Biol. 2006; 290: 351-8
  79. Zhu G.Z., Miller B.J., Boucheix C. et al. Residues SFQ (173- 175) in the large extracellular loop of CD9 are required for gamete fusion. Development 2002; 129: 1995-2002.
  80. Thali M. The roles of tetraspanins in HIV-1 replication. Curr. Top. Microbiol. Immunol. 2009; 339: 85-102.
  81. Rana S., Yue S., Stadel D. et al. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 2012; 44: 1574-84.
  82. Morelli A.E., Larregina A.T., Shufesky W.J. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004; 104: 3257-66.
  83. Nolte-'t Hoen E.N., Buschow S.I., Anderton S.M. et al. Activated T cells recruit exosomes secreted by dendritic cells via LFA- 1. Blood 2009; 113: 1977-81.
  84. Hao S., Bai O., Li F. et al. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology 2007; 120: 90-102.
  85. Xie Y., Zhang H., Li W. et al. Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J. Immunol. 2010; 185: 5268-78.
  86. Christianson H.C., Svensson K.J., van Kuppevelt T.H. et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. PNAS USA 2013; 110: 17380-5.
  87. Näslund T.I., Paquin-Proulx D., Paredes P.T. et al. Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+T cells. AIDS 2014; 28: 171-80.
  88. Swanson J.A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 2008; 9: 639-49.
  89. Kerr M.C., Teasdale R.D. Defining macropinocytosis. Traffic 2009; 10: 364-71.
  90. Grimmer S., van Deurs B., Sandvig K. Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J. Cell Sci. 2002; 115: 2953-62.
  91. Ahram M., Sameni M., Qiu R.G. et al. Rac1-induced endocytosis is associated with intracellular proteolysis during migration through a three-dimensional matrix. Exp. Cell Res. 2000; 260: 292-303.
  92. Ridley A.J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006; 16: 522-9.
  93. Doherty G.J., McMahon H.T. Mechanisms of endocytosis. Annu. Rev. Biochem. 2009; 78: 857-902.
  94. Rudt S., Müller R.H. In vitro phagocytosis assay of nano- and microparticles by chemiluminescence. III. Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution. Eur. J. Pharm. Sci. 1993; 1: 31-9.
  95. Stephens L., Ellson C., Hawkins P. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell Biol. 2002; 14: 203-13.
  96. Feng D., Zhao W.L., Ye Y.Y. et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic 2010; 11: 675-87.
  97. Fomina A.F., Deerinck T.J., Ellisman M.H. et al. Regulation of membrane trafficking and subcellular organization of endocytic compartments revealed with FM1-43 in resting and activated human T cells. Exp. Cell Res. 2003; 291: 150-66.
  98. Yuyama K., Sun H., Mitsutake S. et al. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-ß by microglia. J. Biol. Chem. 2012; 287: 10977-89.
  99. Nabi I.R., Le P.U. Caveolae/raft-dependent endocytosis. J. Cell Biol. 2003; 161: 673-7.
  100. Simons K., Ehehalt R. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 2002; 110: 597-603.
  101. Palecek S.P., Schmidt C.E., Lauffenburger D.A. et al. Integrin dynamics on the tail region of migrating fibroblasts. J. Cell Sci. 1996; 109: 941-52.
  102. Glebov O.O., Bright N.A., Nichols B.J. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat. Cell Biol. 2006; 8: 46-54.
  103. Frick M., Bright N.A., Riento K. et al. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr. Biol. 2007; 17: 1151-6.
  104. Volonte D., Galbiati F., Li S. et al. Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J. Biol. Chem. 1999; 274: 12702-9.
  105. Otto G.P., Nichols B.J. The roles of flotillin microdomains - endocytosis and beyond. J. Cell Sci. 2011; 124: 3933-40.
  106. Wang E., Norred W.P., Bacon C.W. et al. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 1991; 266: 14486-90.
  107. Svensson K.J., Christianson H.C., Wittrup A. et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signalling and lipid raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem. 2013; 288: 17713-24.
  108. Koumangoye R.B., Sakwe A.M., Goodwin J.S. et al. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One 2011; 6: e24234.
  109. Kirchhausen T. Clathrin. Annu. Rev. Biochem. 2000; 69: 699-727.
  110. Vallee R.B., Herskovits J.S., Aghajanian J.G. et al. Dynamin, a GTPase involved in the initial stages of endocytosis. Ciba Found. Symp. 1993; 176: 185-93.
  111. Chappie J.S., Acharya S., Leonard M. et al. G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature 2010; 465: 435-40.
  112. Fitzner D., Schnaars M., van Rossum D. et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 2011; 124: 447-58.
  113. Benmerah A., Bayrou M., Cerf-Bensussan N. et al. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 1999; 112: 1303-11.
  114. Parton R.G., Simons K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007; 8: 185-94.
  115. Nanbo A., Kawanishi E., Yoshida R. et al. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J. Virol. 2013; 87: 10334-47.
  116. Razani B., Engelman J.A., Wang X.B. et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 2001; 276: 38121-38.
  117. Parolini I., Federici C., Raggi C. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 2009; 284: 34211-22.
  118. Chernomordik L.V., Kozlov M.M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 2008; 15: 675-83.
  119. Jahn R., Südhof T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 1999; 68: 863-911.
  120. Kucharzewska P., Christianson H.C., Welch J.E. et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. PNAS USA 2013; 110: 7312-7.
  121. Chistiakov D.A., Chekhonin V.P. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol. 2014; 35(9): 8425-38.
  122. Rana S., Malinowska K., Zöller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013; 15: 281-95.
  123. Yu X., Deng L., Wang D. et al. Mechanism of TNF-a autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1a, presented by exosomes. J. Mol. Cell Cardiol. 2012; 53: 848-57.
  124. Amabile N., Rautou P.E., Tedgui A. et al. Microparticles: key protagonists in cardiovascular disorders. Semin. Thromb. Hemost. 2010; 36: 907-16.
  125. Lachenal G., Pernet-Gallay K., Chivet M. et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell Neurosci. 2011; 46: 409-18.
  126. Frühbeis C., Fröhlich D., Kuo W.P. et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013; 11: e1001604.
  127. Frühbeis C., Fröhlich D., Kuo W.P. et al. Extracellular vesicles as mediators of neuron-glia communication. Front. Cell. Neurosci. 2013; 7: 182.
  128. Ghidoni R., Benussi L., Binetti G. Exosomes: the Trojan horses of neurodegeneration. Med. Hypotheses 2008; 70(6): 1226-7.
  129. Danzer K.M., Kranich L.R., Ruf W.P. et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 2012; 7: 42.
  130. Baixauli F., Löpez-Otin C., Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front. Immunol. 2014; 5: 403.
  131. Coleman B.M., Hanssen E., Lawson V.A. et al. Prion-infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J. 2012; 26: 4160-73.
  132. Salomon C., Torres M.J., Kobayashi M. et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One 2014; 9: e98667.
  133. Toth B., Lok C.A., Böing A. et al. Microparticles and exosomes: impact on normal and complicated pregnancy. Am. J. Reprod. Immunol. 2007; 58: 389-402.
  134. Izquierdo-Useros N., Naranjo-Gömez M., Erkizia I. et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. 2010; 6: e1000740.
  135. Jaworski E., Narayanan A., Van Duyne R. et al. Human T-lymphotropic virus type 1 infected cells secrete exosomes that contain tax protein. J. Biol. Chem. 2014; 289(32): 22284-305.
  136. Bukong T.N., Momen-Heravi F., Kodys K. et al. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. 2014; 10: e1004424.
  137. Kruh-Garcia N.A., Wolfe L.M., Dobos K.M. Deciphering the role of exosomes in tuberculosis. Tuberculosis (Edinb.) 2015; 95: 26-30.
  138. Regev-Rudzki N., Wilson D.W., Carvalho T.G. et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 2013; 153: 1120-33.
  139. Yang H., Fu H., Xu W. et al. Exosomal non-coding RNAs: a promising cancer biomarker. Clin. Chem. Lab. Med. 2016; 54(12): 1871-9.
  140. Joyce D.P., Kerin M.J., Dwyer R.M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. Int. J. Cancer 2016; 139(7): 1443-8.
  141. Kharmate G., Hosseini-Beheshti E., Caradec J. et al. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes. PLoS One 2016; 11(5): e0154967.
  142. Motamedinia P., Scott A.N., Bate K.L. et al. Urine Exosomes for Non-Invasive Assessment of Gene Expression and Mutations of Prostate Cancer. PLoS One 2016; 11(5): e0154507.
  143. Saini S. PSA and beyond: alternative prostate cancer biomarkers. Cell Oncol. (Dordr). 2016; 39(2): 97-106.
  144. Junker K., Heinzelmann J., Beckham C. et al. Extracellular Vesicles and Their Role in Urologic Malignancies. Eur. Urol. 2016; 70(2): 323-31.
  145. Tovar-Camargo O.A., Toden S., Goel A. Exosomal microRNA Biomarkers: Emerging Frontiers in Colorectal and Other Human Cancers. Expert Rev. Mol. Diagn. 2016; 16(5): 553-67.
  146. Belov L., Matic K.J., Hallal S. et al. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J. Extracell. Vesicles 2016; 5: 25355.
  147. D’Asti E., Chennakrishnaiah S., Lee T.H. et al. Extracellular Vesicles in Brain Tumor Progression. Cell Mol. Neurobiol. 2016; 36(3): 383-407.
  148. Munagala R., Aqil F., Gupta R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumour. Biol. 2016; 37(8): 10703-14.
  149. Lu L., Risch H.A. Exosomes: potential for early detection in pancreatic cancer. Future Oncol. 2016; 12(8): 1081-90.
  150. Samsonov R., Burdakov V., Shtam T. et al. Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer. Tumour Biol. 2016; 37(9): 12011-21.
  151. Meng X., Müller V., Milde-Langosch K. et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016; 7(13): 16923-35.
  152. Min P.K., Chan S.Y. The biology of circulating microRNAs in cardiovascular disease. Eur. J. Clin. Invest. 2015; 45(8): 860-74.
  153. Nouraee N., Mowla S.J. miRNA therapeutics in cardiovascular diseases: promises and problems. Front. Genet. 2015; 6: 232.
  154. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Cardiac Extracellular Vesicles in Normal and Infarcted Heart. Int. J. Mol. Sci. 2016; 17(1): 63.
  155. Yuan M.J., Maghsoudi T., Wang T. Exosomes Mediate the Intercellular Communication after Myocardial Infarction. Int. J. Med. Sci. 2016; 13(2): 113-6.
  156. Hoefer I.E., Steffens S., Ala-Korpela M. et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J. 2015; 36(39): 2635-42.
  157. Lu D., Xu A.D. Mini Review: Circular RNAs as Potential Clinical Biomarkers for Disorders in the Central Nervous System. Front. Genet. 2016; 7: 53.
  158. Lööv C., Scherzer C.R., Hyman B.T. et al. a-Synuclein in Extracellular Vesicles: Functional Implications and Diagnostic Opportunities. Cell Mol. Neurobiol. 2016; 36(3): 437-48.
  159. Vella L.J., Hill A.F., Cheng L. Focus on Extracellular Vesicles: Exosomes and Their Role in Protein Trafficking and Biomarker Potential in Alzheimer’s and Parkinson’s Disease. Int. J. Mol. Sci. 2016; 17(2): 173.
  160. Van Giau V., An S.S. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. J. Neurol. Sci. 2016; 360: 141-52.
  161. Coleman B.M., Hill A.F. Extracellular vesicles - Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin. Cell Dev. Biol. 2015; 40: 89-96.
  162. Sato K., Meng F., Glaser S. et al. Exosomes in liver pathology. J. Hepatol. 2016; 65(1): 213-21.
  163. Ban L.A., Shackel N.A., McLennan S.V. Extracellular Vesicles: A New Frontier in Biomarker Discovery for Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2016; 17(3): 376.
  164. Krause M., Samoylenko A., Vainio S.J. Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Front. Cell Dev. Biol. 2015; 3: 65.
  165. O’Neill S., Bohl M., Gregersen S. et al. Blood-Based Biomarkers for Metabolic Syndrome. Trends Endocrinol. Metab. 2016; 27(6): 363-74.
  166. Veerappan A., Thompson M., Savage A. et al. Mast cells and exosomes in hyperoxia-induced neonatal lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016; 310(11): L1218-32.
  167. Zhang Y., Yu M., Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 2016; 49(1): 3-13.
  168. Tsochandaridis M., Nasca L., Toga C. et al. Circulating MicroRNAs as Clinical Biomarkers in the Predictions of Pregnancy Complications. Biomed. Res. Int. 2015; 2015: 294954.
  169. Mouillet J.F., Ouyang Y., Coyne C.B. et al. MicroRNAs in placental health and disease. Am. J. Obstet. Gynecol. 2015; 213 Suppl 4: S163-72.
  170. Mitchell M.D., Peiris H.N., Kobayashi M. et al. Placental exosomes in normal and complicated pregnancy. Am. J. Obstet. Gynecol. 2015; 213 Suppl 4: S173-81.
  171. Schorey J.S., Harding C.V. Extracellular vesicles and infectious diseases: new complexity to an old story. J. Clin. Invest. 2016; 126(4): 1181-9.
  172. Britton C., Winter A.D., Marks N.D. et al. Application of small RNA technology for improved control of parasitic helminths. Vet. Parasitol. 2015; 212(1-2): 47-53.
  173. Greening D.W., Gopal S.K., Xu R. et al. Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol. 2015; 40: 72-81.
  174. Perez-Hernandez J., Cortes R. Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus. Dis. Markers 2015; 2015: 613536.
  175. Cai X., Janku F., Zhan Q. et al. Accessing Genetic Information with Liquid Biopsies. Trends Genet. 2015; 31(10): 564-75.
  176. Mel’nikov P.A., Baklaushev V.P., Gabashvili A.N. et al. Internalization of Vectorized Liposomes Loaded with Plasmid DNA in C6 Glioma Cells. Bull. Exp. Biol. Med. 2017; 163(1): 114-22.
  177. Nukolova N.V., Baklaushev V.P., Abakumova T.O. et al. Targeted delivery of cisplatin by connexin 43 vector nanogels to the focus of experimental glioma c6. Bull. Exp. Biol. Med. 2014; 157(4): 524-9.
  178. Ren J., He W., Zhenga L. et al. From structures to functions: insights into exosomes as promising drug delivery vehicles. Biomater. Sci. 2016; 4(6): 910-21.
  179. Ohno S., Takanashi M., Sudo K. et al. Systemically injected exosomes targetedto EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 2013; 21(1): 185-91.
  180. Srivastava A., Babu A., Filant J. et al. Exploitation of Exosomes as Nanocarriers for Gene-, Chemo-, and Immune-Therapy of Cancer. J. Biomed. Nanotechnol. 2016; 12(6): 1159-73.
  181. Wahlgren J., De L. Karlson T., Brisslert M. et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012; 40: e130.
  182. Ha D., Yang N., Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm. Sin. B 2016; 6(4): 287-96.
  183. Sun D.M., Zhuang X.Y., Xiang X.Y. et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 2010; 18: 1606-14.
  184. Pardridge W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012; 32: 1959-72.
  185. Yang T.Z., Martin P., Fogarty B. et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio Rerio. Pharm. Res. 2015; 32: 2003-14.
  186. Tian Y.H., Li S.P., Song J. et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35: 2383-90.
  187. Haney M.J., Klyachko N.L., Zhao Y.L. et al. Exosomes as drug delivery vehicles for Parkinson-s disease therapy. J. Control. Release 2015; 207: 18-30.
  188. Andre F., Schartz N.E., Movassagh M. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 2002; 360(9329): 295-305.
  189. Butts J.C., McCreedy D.A., Martinez-Vargas J.A. et al. Differentiation of V2a interneurons from human pluripotent stem cells. PNAS USA 2017; 114(19): 4969-74.
  190. Gomzikova M.O., Rizvanov A.A. Current Trends in Regenerative Medicine: From Cell to Cell-Free Therapy. Bionanoscience 2017; 7(1): 240-5.
  191. Teng X., Chen L., Chen W. et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell. Physiol. Biochem. 2015; 37: 2415-24.
  192. Zhou Y., Xu H., Xu W. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013; 4: 34.
  193. Tan C.Y., Lai R.C., Wong W. et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 2014; 5: 76.
  194. Hu G.W., Li Q., Niu X. et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res. Ther. 2015; 6: 10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies