Genetically modified human umbilical cord blood mononuclear cells as potential stimulators of neuroregeneration in degenerative disorders of central nervous system

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Gene-cell therapy is a new step for the treatment of different human disorders including central nervous system degenerative diseases. In this review we focused on the last challenges in the field of human umbilical cord blood mononuclear cells transplantation - an attempt to support neuronal cells survival and to stimulate the neuroregeneration. As a potential therapy for the treatment of neurodegenerative diseases we reviewed the latest advances in gene modification of human umbilical cord blood mononuclear cells as a novel tool for the effective delivery of neuroprotective factors and growth factors in the injured or degenerative areas of the central nervous system under pathological conditions. The main topic of this review is the potential therapy of the amyotrophic lateral sclerosis - the progressive neurodegenerative disorder affecting primarily upper and lower motoneurons - by using genetically modified human umbilical cord blood mononuclear cells. The results from the up-to-date experiments indicated the opportunity to obtain differentiated macrophages, endothelial cells, or astrocytes from the genetically modified human umbilical cord blood mononuclear cells after their transplantation in the mouse model of the amyotrophic lateral sclerosis. Taken together, these data build the high-capacity platform for the supporting of degenerating neurons, structural and functional recovery of the brain and spinal cord after trauma, ischemia and other neurodegenerative disorders.

Full Text

Restricted Access

About the authors

D. S Guseva

Kazan Federal University; Kazan State Medical University

Kazan

A. A Rizvanov

Kazan Federal University

Kazan

A. P Kiyasov

Kazan Federal University

Kazan

R. R Islamov

Kazan State Medical University

Kazan

References

  1. Eapen M., Rocha V., Sanz G. et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010; 11(7): 653-60.
  2. Шаманская Т.В., Астрелина Т.А., Подколзина З.А. и др. Использование пуповинной крови при проведении аллогенной трансплантации гемопоэтических стволовых клеток у детей (опыт работы московского банка стволовых клеток). Клеточная трансплантология и тканевая инженерия 2010; 5(2): 29-35.
  3. Stanevsky A., Goldstein G., Nagler A. Umbilical cord blood transplantation: pros, cons and beyond. Blood Rev. 2009; 23: 199-204.
  4. Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp. Hematol. 2000; 28(11): 1197-205.
  5. Ballen K., Broxmeyer H.E., McCullough J. et al. Current status of cord blood banking and transplantation in the United States and Europe. Biol. Blood Marrow Transplant. 2001; 7(12): 635-45.
  6. Космачева С.М., Северин И.Н., Гончарова Н.В. и др. Рост мезенхимальных стволовых клеток пуповинной крови человека in vitro и их дифференцировка в хондроциты и остеобласты. Клеточные технологии в биологии и медицине 2008; 1: 34-8.
  7. Harris D.T., Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr. Stem Cell Res. Ther. 2007; 2: 301-9.
  8. Arien-Zakay H., Lazarovici P., Nagler A. Tissue regeneration potential in human umbilical cord blood. Best Pract. Res. Clin. Haematol. 2010; 23(2): 291-303.
  9. Arien-Zakay H., Lecht S., Nagler A. et al. Human umbilical cord blood stem cells: rational for use as a neuroprotectant in ischemic brain disease. Int. J. Mol. Sci. 2010; 11(9): 3513-28.
  10. Gluckman E., Broxmeyer H.A., Auerbach A.D. et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N. Engl. J. Med. 1989; 321(17): 1174-8.
  11. Gluckman E. Ten years of cord blood transplantation: from bench to bedside. Br. J. Haematol. 2009; 147(2): 192-9.
  12. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 2000; 109(1): 235-42.
  13. Kogler G., Sensken S., Airey J.A. et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 2004; 200: 123-35.
  14. Zhao Y., Wang H., Mazzone T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp. Cell Res. 2006; 312(13): 2454-64.
  15. McGuckin C., Jurga M., Ali H. et al. Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat. Protoc. 2008; 3: 1046-55.
  16. Tracy E.T., Zhang C.Y., Gentry T. et al. Isolation and expansion of oligodendrocyte progenitor cells from cryopreserved human umbilical cord blood. Cytotherapy 2011; 13: 722-9.
  17. Aktas M., Buchheiser A., Houben A. et al. Good manufacturing practice-grade production of unrestricted somatic stem cell from fresh cord blood. Cytotherapy 2010; 12: 338-48.
  18. Rocha V., Labopin M., Sanz G. et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N. Engl. J. Med. 2004; 351: 2276-85.
  19. Goldstein G., Toren A., Nagler A. Transplantation and other uses of human umbilical cord blood and stem cells. Curr. Pharm. Des. 2007; 13: 1363-73.
  20. Yang W.Z., Zhang Y., Wu F. et al. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J. Transl. Med. 2010; 8: 75.
  21. Arien-Zakay H., Lecht S., Bercu M.M. et al. Interferon-gamma-induced neuronal differentiation of human umbilical cord blood-derived progenitors. Leukemia 2009; 23: 1790-800.
  22. Arien-Zakay H., Nagler A., Galski H. et al. Neuronal conditioning medium and nerve growth factor induce neuronal differentiation of collagen-adherent progenitors derived from human umbilical cord blood. J. Mol. Neurosci. 2007; 32: 179-91.
  23. Jang Y.K., Park J.J., Lee M.C. et al. Retinoic acid mediated induction of neurons and glial cells from human umbilical cord derived hematopoietic stem cells. J. Neurosci. Res. 2004; 75: 573-84.
  24. Li X., Li H., Bi J. et al. Human cord blood-derived multipotent stem cells (CB-SCs) treated with alltrans-retinoic acid (ATRA) give rise to dopamine neurons. Biochem. Biophys. Res. Commun. 2012; 419(1): 110-6.
  25. McGuckin C.P., Forraz N., Allouard Q. et al. Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp. Cell Res. 2004; 295: 350-9.
  26. Sun W., Buzanska L., Domanska-Janik K. et al. Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells. 2005; 23: 931-45.
  27. Habich A., Jurga M., Markiewicz I. et al. Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp. Hematol. 2006; 34: 914-25.
  28. Buzanska L., Jurga M., Stachowiak E.K. et al. Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Develop. 2006; 15: 391-406.
  29. Rogers I., Yamanaka N., Bielecki R. et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multilineage differentiation. Exp. Cell Res. 2007; 313: 1839-52.
  30. Jurga M., Lipkowski A.W., Lukomska B. et al. Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng., Part C Methods. 2009; 15: 365-72.
  31. Harris D.T. Cord blood stem cells: a review of potential neurological applications. Stem Cell Rev. 2008; 4: 269-74.
  32. Ende N., Chen R., Ende-Harris D. Human umbilical cord blood cells ameliorate Alzheimer's disease in transgenic mice. J. Med. 2001; 32(3-4): 241-7.
  33. Nikolic W.V., Hou H., Town T. et al. Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Develop. 2008; 17: 1-17.
  34. Lee H.J., Lee J.K., Lee H. et al. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease. Neurosci. Lett. 2010; 481(1): 30-5.
  35. Meier C., Middelanis J., Wasielewski B. et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr. Res. 2006; 59: 244-9.
  36. Chen J., Sanberg P.R., Li Y. et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001; 32: 2682-8.
  37. Vendrame M., Cassady J., Newcomb J. et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose dependently rescues behavioral deficits and reduces infarct volume. Stroke 2004; 35: 2390-5.
  38. Xiao J., Nan Z., Motooka Y. et al. Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. 2005; 14: 722-33.
  39. Newcomb J.D., Ajrno C.T., Sanberg C.D. et al. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006; 15: 213-23.
  40. Taguchi A., Soma T., Tanaka H. et al. Administration of CD34 cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest. 2004; 114: 330-8.
  41. Saporta S., Kim J.J., Willing A.E. et al. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J. Hematother. Stem Cell Res. 2003; 12: 271-8.
  42. Nishio Y., Koda M., Kamada T. et al. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J. Neurosurg. Spine. 2006; 5: 424-33.
  43. Sun T., Ma Q.H. Repairing neural injuries using human umbilical cord blood. Mol. Neurobiol. 2013; 47(3): 938-45.
  44. Chen C.T., Foo N.H., Liu W.S. et al. Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms. Pediatr. Neonatol. 2008; 49(3): 77-83.
  45. Dasari V.R., Veeravalli K.K., Tsung A.J. et al. Neuronal apoptosis is inhibited by cord blood stem cells after spinal cord injury. Neurotrauma 2009; 26(11): 2057-69.
  46. Park D.H., Lee J.H., Borlongan C.V. et al. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev. 2011; 7(1): 181-94.
  47. Fu Y.S., Cheng Y.C., Lin M.Y. et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 2006; 24: 115-24.
  48. Weiss M.L., Medicetty S., Bledsoe A.R. et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 2006; 24: 781-92.
  49. Newman M.B., Willing A.E., Manressa J.J. et al. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp. Neurol. 2006; 199: 201-8.
  50. Bachstetter A.D., Pabon M.M., Cole M.J. et al. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci. 2008; 9: 22.
  51. Arien-Zakay H., Lecht S., Bercu M.M. et al. Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp. Neurol. 2009; 216: 83-94.
  52. Schira J., Gasis M., Estrada V. et al. Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain 2012; 135(Pt 2): 431-46.
  53. Dasari V.R., Spomar D.G., Li L. et al. Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochem. Res. 2008; 33(1): 134-49.
  54. Завалишин И.А., Бочков Н.П., Суетна З.А. и др. Генная терапия бокового амиотрофического склероза: двухлетнее рандомизированное плацебо-контролируемое исследование. Бюллетень экспериментальной биологии и медицины 2008; 145(4): 467-70.
  55. Chen N., Newcomb J., Garbuzova-Davis S. et al. Human umbilical cord blood cells have trophic effects on young and aging hippocampal neurons in vitro. Aging Dis. 2010; 1: 173-90.
  56. Koh S.H., Kim K.S., Choi M.R., et al. Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res. 2008; 1229: 233-48.
  57. Yasuhara T., Hara K., Maki M. et al. Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J. Cell Mol. Med. 2010; 14(4): 914-21.
  58. Borlongan C.V., Hadman M., Sanberg C.D. et al. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 2004; 35(10): 2385-9.
  59. Zola H., Fusco M., Macardle P.J. et al. Expression of cytokine receptors by human cord blood lymphocytes: comparison with adult blood lymphocytes. Pediatr. Res. 1995; 38: 397-403.
  60. Ikeda Y., Fukuda N., Wada M. et al. Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens. Res. 2004; 27(2): 119-28.
  61. Chen H.K., Hung H.F., Shyu K.G. et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur. J. Clin. Invest. 2005; 35: 677-86.
  62. Шевченко Е.К., Макаревич П.И., Цоколаева З.И. и др. Эффективная трансдукция стромальных клеток жировой ткани человека с помощью рекомбинантного аденоассоциированного вируса. Клеточная трансплантология и тканевая инженерия 2010; 5(1): 60-4.
  63. Cotrim A.P., Baum B.J. Gene therapy: some history, applications, problems, and prospects. Toxicol. Pathol. 2008; 36(1): 97-103.
  64. Zubbler R.H. Ex vivo expansion of haematopoietic stem cells and gene therapy development. Swiss Med. Wkly. 2006; 136: 795-9.
  65. Herweijer H., Wolff J.A. Progress and prospects: naked DNA gene transfer and therapy. Gene Therapy 2003; 10: 453-8.
  66. Conlon T.J., Flotte T.R. Recombinant adeno-associated virus vectors for gene therapy. Expert. Opin. Biol. Ther. 2004; 4(7): 1093101.
  67. Lowenstein P.R., Castro M.G. Inflammation and adaptive immune responses to adenoviral vectors injected into the brain: peculiarities, mechanisms, and consequences. Gene Therapy 2003; 10(11): 946-54.
  68. Baum B.J., Zheng C., Cotrim A.P. et al. Transfer of the AQP1 cDNA for the correction of radiation-induced salivary hypofunction. Biochim. Biophys. Acta. 2006; 1758(8): 1071-7.
  69. Ипатов С.Е., Румянцев С.А. Вопросы безопасности генной терапии. Онкогематология 2010; 1: 57-63.
  70. Das H., George J.C., Joseph M. et al. Stem cell therapy with overexpressed VEGF and PDGF genes improves cardiac function in a rat infarct model. PLoS One 2009; 4(10): e7325.
  71. Макаревич П.И., Шевелев А.Я., Рыбалкин И.Н. и др. Новые плазмидные конструкции, предназначенные для терапевтического ангиогенеза и несущие гены ангиогенных факторов роста - VEGF, HGF и ангиопоэтина-1. Клеточная трансплантология и тканевая инженерия 2010; 5(1): 47-52.
  72. Vincent A.M., Sakowski S.A., Schuyler A. et al. Strategic approaches to developing drug treatments for ALS. Drug Discov. Today. 2008; 13: 67-72.
  73. Julien J.P. Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell 2001; 104: 581-91.
  74. Bruijn L., Miller T., Cleveland D. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 2004; 27: 723-49.
  75. Rothstein J.D. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009; 65(Suppl 1): S3-9.
  76. Rosen D.R., Siddique T., Patterson D. et al: Mutations in Cu/ Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62.
  77. Gurney M.E., Pu H., Chiu A.Y. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994; 264(5166): 1772-5.
  78. Garbuzova-Davis S., Willing A.E., Zigova T. et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem Cell Res. 2003; 12: 255-70.
  79. Garbuzova-Davis S., Sanberg C.D., Kuzmin-Nichols N. et al. Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS One 2008; 3: e2494.
  80. Knippenberg S., Thau N., Schwabe K. et al. Intraspinal injection of human umbilical cord blood-derived cells is neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis. 2012; 9(3): 107-20.
  81. Nishikawa M., Takemoto S., Takakura Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int. J. Pharm. 2008; 354(1-2): 23-7.
  82. Kaspar B.K., Llado J., Sherkat N. et al. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 2003; 301: 839-42.
  83. Duque S., Joussemet B., Riviere C. et al. Intravenous administration of selfcomplementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 2009; 17: 1187-96.
  84. Foust K.D., Nurre E., Montgomery C.L. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 2009; 27: 59-65.
  85. Snyder B.R., Gray S.J., Quach E.T. et al. Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum. Gene Ther. 2011; 22(9): 1129-35.
  86. Federici T., Taub J.S., Baum G.R. et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Therapy 2012; 19(8): 852-9.
  87. Foust K.D., Bevan A.K., Braun L. et al. Biodistribution of IV injected AAV9 in young cynomologus macaques. ASGCT 14th Annual Meeting; 2011 May 18-21; Seattle: Nature Publishing Group; 2011. p. S152.
  88. Gray S.J., Matagne V., Bachaboina L. et al. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol. Ther. 2011; 19(6): 1058-69.
  89. Federici T., Boulis N.M. Gene therapy for amyotrophic lateral sclerosis. Neurobiol. Dis. 2012; 48(2): 236-42.
  90. Taha M.F. Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders. Curr. Stem Cell Res. Ther. 2010; 5(1): 23-36.
  91. Lehrman S. Virus treatment questioned after gene therapy death. Nature 1999; 401(6753): 517-8.
  92. Hacein-Bey-Abina S., von Kalle C., Schmidt M. et al. A serious adverse event after successful gene therapy for X-linked severe combined immuno-deficiency. N. Engl. J. Med. 2003; 348(3): 255-56.
  93. Mohajeri M.H., Figlewicz D.A., Bohn M.C. Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum. Gene Ther. 1999; 10(11): 1853-66.
  94. Klein S.M., Behrstock S., McHugh J. et al. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum. Gene Ther. 2005; 16(4): 509-21.
  95. Behrstock S., Ebert A., McHugh J. et al. Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Therapy 2006; 13(5): 379-88.
  96. Aebischer P., Pochon N.A., Heyd B. et al. Gene therapy for amyotrophic lateral sclerosis (ALS) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF. Hum. Gene Ther. 1996; 7(7): 851-60.
  97. Aebischer P., Schluep M., Deglon N. et al. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat. Med. 1996; 2(6): 696-9.
  98. Rizvanov A.A., Kiyasov A.P., Gaziziov I.M. et al. Human umbilical cord blood cells transfected with VEGF and L(1)CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neuro-genesis-a novel approach in stem cell therapy. Neurochem. Int. 2008; 53(6-8): 389-94.
  99. Ризванов А.А., Гусева Д.С., Салафутдинов И.И. и др. Генноклеточная терапия бокового амиотрофического склероза мононуклеарными клетками пуповинной крови человека, сверхэкспресси-рующими гены нейронной молекулы адгезии L1cam и сосудистого эндотелиального фактора роста vegf. Клеточная трансплантология и тканевая инженерия 2010; V(4): 56-63.
  100. Rizvanov A.A., Guseva D.S., Salafutdinov I.I. et al. Genetically modified human umbilical cord blood cells expressing vascular endothelial growth factor and fibroblast growth factor 2 differentiate into glial cells after transplantation into amyotrophic lateral sclerosis transgenic mice. Exp. Biol. Med. 2011; 236: 91-8.
  101. Krakora D., Mulcrone P., Meyer M. et al. Synergistic Effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol. Ther. 2013; 21(8): 1602-10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies