The dynamics of microRNAs level associated with pathological venous angiogenesis in experimental toxic liver fibrosis in rats

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: It is known that miRNAs are important in liver fibrogenesis. However, their use as targets for early diagnosis and treatment of fibrosis is far from use in clinical practice. Angiogenesis and sinusoid capillarization are important histological features of the process. Studies regarding the role of miRNAs in pathological angiogenesis and sinusoid capillarization are insufficient.

AIM: To study the molecular targets (miRNAs and mRNAs) dynamics of associated with pathological angiogenesis in toxic fibrosis of the liver; to evaluate the relationship of the selected molecular factors to the processes of restructuring the intrahepatic vascular system.

METHODS: Fibrosis and subsequent cirrhosis of the liver in rats of the Wistar line (males) were induced for 17 weeks by a freshly prepared solution of thioacetamide. The level of miRNA-19а-3р, miRNA-29b-3р, miRNA-29b-1-5p, miRNA-34b-5р, miRNA-125b-5р, miRNA-130a-5p, miRNA-195-5р, miRNA-449а-5р, miRNA-449с-5р, miRNA-466d, miRNA-489-3р, miRNA-495, miRNA-664-3р, miRNA-3085, miRNA-3558-3р in fresh frozen liver samples, was determined by Two-tailed RT-qPCR.

RESULTS: In this study, we found that throughout the experiment, the relative level of microRNAs varied in a wide range of values (10–3–104 rel. units). In most cases, it decreased at the point of transition from fibrosis to cirrhosis, while growth was observed only for microRNA-29b-3p. Statistically significant correlation relationships were established between microRNAs and the number of interlobular veins, interlobular arteries, sinusoids, and the area of connective tissue (p <0.05).

CONCLUSION: A joint analysis of morphological and molecular-genetic parameters allowed us to suggest that within the framework of the current experimental model of liver fibrosis and cirrhosis, the restructuring of the intrahepatic vascular bed and the progression of fibrosis are associated with the dynamics of the level of a number of microRNAs that we studied and Ang mRNA level.

Full Text

Restricted Access

About the authors

Elena I. Lebedeva

Vitebsk State Order of Peoples’ Friendship Medical University

Author for correspondence.
Email: lebedeva.ya-elenale2013@yandex.ru
ORCID iD: 0000-0003-1309-4248
SPIN-code: 4049-3213

PhD, Cand. Sci. (Biology), Associate Professor

Belarus, Vitebsk

Andrei S. Babenka

Belarusian State Medical University

Email: labmdbt@gmail.com
ORCID iD: 0000-0002-5513-970X
SPIN-code: 9715-4070

PhD, Cand. Sci. (Chemistry), Associate Professor

Belarus, Minsk

Anatoly T. Shchastniy

Vitebsk State Order of Peoples’ Friendship Medical University

Email: rectorvsmu@gmail.com
ORCID iD: 0000-0003-2796-4240
SPIN-code: 3289-6156

PhD, Cand. Sci. (Biology), Associate Professor

Belarus, Vitebsk

References

  1. Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26(3):313–347. doi: 10.1007/s10456-023-09876-7
  2. Wang D, Zhao Y, Zhou Y, et al. Angiogenesis-an emerging role in organ fibrosis. Int J Mol Sci. 2023;24(18):14123. doi: 10.3390/ijms241814123
  3. Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: pathophysiological mechanisms and therapy. JHEP Rep. 2021;3(4):100316. doi: 10.1016/j.jhepr.2021.100316
  4. Lin Y, Dong MQ, Liu ZM, et al. A strategy of vascular-targeted therapy for liver fibrosis. J. Hepatology. 2022;76(3):660–675. doi: 10.1002/hep.32299
  5. Chen W, Wu P, Yu F, et al. HIF-1α regulates bone homeostasis and angiogenesis, participating in the occurrence of bone metabolic diseases. Cells. 2022;11(22):3552. doi: 10.3390/cells11223552
  6. Della Rocca Y, Fonticoli L, Rajan TS, et al. Hypoxia: molecular pathophysiological mechanisms in human diseases. J Physiol Biochem. 2022;78(4):739–752. doi: 10.1007/s13105-022-00912-6
  7. Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344
  8. Wu X, Qian L, Zhao H, et al. CXCL12/CXCR4: an amazing challenge and opportunity in the fight against fibrosis. Ageing Res Rev. 2023;83:101809. doi: 10.1016/j.arr.2022.101809
  9. Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol. 2023;20(3):217–251. doi: 10.1038/s41423-023-00974-6
  10. Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949:175586. doi: 10.1016/j.ejphar.2023.175586
  11. Gao R., Tang H., Mao J. Programmed cell death in liver fibrosis. J Inflamm Res. 2023;16:3897–3910. doi: 10.2147/JIR.S427868
  12. Park HJ, Choi J, Kim H, et al. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci. 2023;10:1221669. doi: 10.3389/fmolb.2023.1221669
  13. Pei Q, Yi Q, Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Int J Mol Sci. 2023;24(11):9671. doi: 10.3390/ijms24119671
  14. Lebedeva EI, Shchastniy AT, Babenka AS. Cellular and molecular mechanisms of toxic liver fibrosis in rats depending on the stages of its development. Sovremennye tehnologii v medicine. 2023;15(4):50. EDN: QNUJAC doi: 10.17691/stm2023.15.4.05
  15. Lebedeva EI, Babenka AS, Hastemir P, et al. FN14 mRNA expression correlates with an increased number of veins during angiogenesis in the process of liver fibrosis. Int J Mol Cell Med. 2022;11(4):274–284. doi: 10.22088/IJMCM.BUMS.11.4.274
  16. Kargutkar N, Hariharan P, Nadkarni A. Dynamic interplay of microRNA in diseases and therapeutic. Clin Genet. 2023;103(3):268–276. doi: 10.1111/cge.14256
  17. Abdel Halim AS, Rudayni HA, Chaudhary AA, Ali MAM. MicroRNAs: small molecules with big impacts in liver injury. J Cell Physiol. 2023;238(1):32–69. doi: 10.1002/jcp.30908
  18. Chang Y, Han JA, Kang SM, et al. Clinical impact of serum exosomal microRNA in liver fibrosis. PLoS One. 2021;16(9):e0255672. doi: 10.1371/journal.pone.0255672
  19. Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23(13):7167. doi: 10.3390/ijms23137167
  20. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-D131. doi: 10.1093/nar/gkz757
  21. Androvic P, Valihrach L, Elling J, et al. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res. 2017;45(15):e144. doi: 10.1093/nar/gkx588
  22. Tadokoro T, Morishita A, Masaki T. Diagnosis and therapeutic management of liver fibrosis by microRNA. Int J Mol Sci. 2021;22(15):8139. doi: 10.3390/ijms22158139
  23. Latief U, Tung GK, Per TS, et al. Micro RNAs as emerging therapeutic targets in liver diseases. Curr Protein Pept Sci. 2022;23(6):369–383. doi: 10.2174/1389203723666220721122240
  24. Pan Y, Wang J, He L, Zhang F. MicroRNA-34a promotes EMT and liver fibrosis in primary biliary cholangitis by regulating TGF-β 1/Smad pathway. J Immunol Res. 2021;2021:6890423. doi: 10.1155/2021/6890423
  25. Zhou QY, Yang HM, Liu JX, et al. MicroRNA-497 induced by Clonorchis sinensis enhances the TGF-β/Smad signaling pathway to promote hepatic fibrosis by targeting Smad7. Parasit Vectors. 2021;14(1):472. doi: 10.1186/s13071-021-04972-3
  26. Cuiqiong W, Chao X, Xinling F, Yinyan J. Schisandrin B suppresses liver fibrosis in rats by targeting miR-101-5p through the TGF-β signaling pathway. Artif Cells Nanomed Biotechnol. 2020;48(1):473–478. doi: 10.1080/21691401.2020.1717507
  27. Qiu J, Wu S, Wang P, et al. miR-488-5p mitigates hepatic stellate cell activation and hepatic fibrosis via suppressing TET3 expression. Hepatol Int. 2023;17(2):463–475. doi: 10.1007/s12072-022-10404-w
  28. Ma Y, Yuan X, Han M, et al. miR-98-5p as a novel biomarker suppress liver fibrosis by targeting TGFβ receptor 1. Hepatol Int. 2022;16(3):614–626. doi: 10.1007/s12072-021-10277-5
  29. Yang X, Ma L, Wei R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-β pathway. Signal Transduct Target Ther. 2020;5(1):75. doi: 10.1038/s41392-020-0169-z
  30. Lin YC, Wang FS. Yang YL, et al. MicroRNA-29a mitigation of toll-like receptor 2 and 4 signaling and alleviation of obstructive jaundice-induced fibrosis in mice. Biochem Biophys Res Commun. 2018;496(3):880–886. doi: 10.1016/j.bbrc.2018.01.132
  31. Liu L, Wang P, Wang YS, et al. MiR-130a-3p alleviates liver fibrosis by suppressing HSCs activation and skewing macrophage to Ly6Cl phenotype. Front Immunol. 2021:12:696069. doi: 10.3389/fimmu.2021.696069
  32. Tian S, Zhou X, Zhang M, et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res Ther. 2022;13(1):330. doi: 10.1186/s13287-022-03010-y
  33. Wang H, Wang Z, Wang Y, et al. miRNA-130b-5p promotes hepatic stellate cell activation and the development of liver fibrosis by suppressing SIRT4 expression. J Cell Mol Med. 2021;25(15):7381–7394. doi: 10.1111/jcmm.16766
  34. Liu Y, Wu X, Gao Y, et al. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. Int J Nanomedicine. 2016;11:3891–3905. doi: 10.2147/IJN.S108128
  35. Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(3):217–233. doi: 10.1080/17474124.2021.1842732
  36. Elpek GÖ. Angiogenesis and liver fibrosis. World J Hepatol. 2015;7(3):377–391. doi: 10.4254/wjh.v7.i3.377
  37. Ding Q, Tian XG, Li Y, et al. Carvedilol may attenuate liver cirrhosis by inhibiting angiogenesis through the VEGF-Src-ERK signaling pathway. World J Gastroenterol. 2015;21(32):9566–9576. doi: 10.3748/wjg.v21.i32.9566
  38. Osawa Y, Yoshio S, Aoki Y, et al. Blood angiopoietin-2 predicts liver angiogenesis and fibrosis in hepatitis C patients. BMC Gastroenterol. 2021;21(1):55. doi: 10.1186/s12876-021-01633-8
  39. Nitzsche B, Rong WW, Goede A, et al. Coalescent angiogenesis-evidence for a novel concept of vascular network maturation. Angiogenesis. 2022;25(1):35–45. doi: 10.1007/s10456-021-09824-3
  40. Coll M, Ariño S, Martínez-Sánchez C, et al. Ductular reaction promotes intrahepatic angiogenesis through Slit2-Roundabout 1 signaling. Hepatology. 2022;75(2):353–368. doi: 10.1002/hep.32140

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Table 1. List of microRNAs included in the study, target microRNAs

Download (216KB)
3. Fig. 1. Histological preparations of rat liver, microphoto: control group (a), after 3 (b), 5 (c), 7 (d), 9 (e), 11 (f), 13 (g), 15 (h, i), 17 (j) weeks after the start of the experiment. Staining using the Mallory method. Mag.: ×100 (g, h, j); ×200 (d, i); ×400 (a, b, c, e, f); a — central vein (arrow); b — incomplete fibrous connective tissue septa (arrow); c — fibrous connective tissue septa (arrows); d — pericellular fibrosis (arrows); e — false hepatic lobule (oval frame); f — thick fibrous connective tissue septa (arrows); g, h — false hepatic lobules of different diameters and shapes, pronounced pathological angiogenesis (arrows); and i — bile ducts (arrows), ductal reaction (oval frame); j — pronounced destruction of the parenchyma.

Download (11MB)
4. Fig. 2. Histological preparations of rat liver, microphoto: control group (а), in 3 (b), 9 (c), 11 (d), 13 (g), 15 (e, h), (f) weeks after the start of the experiment. Immunohistochemical staining for CK19, counterstaining with Mayer’s hematoxylin. Staining using the Mallory method (h). Mag.: ×400 (a, c, e, g, h), ×200 (b, d, f); a–e — CK19+ cells (arrows), f — bile ducts (arrows), g — process of formation of hepatic microlobules from CK19+ cells (oval frame), h — new hepatic microlobules (oval frames).

Download (4MB)
5. Fig. 3. Histological preparations of rat liver, microphotographs: control group (a), 3 (b), 5 (c), 11 (d), 13 (e), 17 (f) weeks after the start of the experiment. Immunohistochemical staining for CD31, counterstaining with Mayer’s hematoxylin. Mag.: ×400 (а, c, d, e), ×200 (b, f); а — CD31+ cells in the sinusoidal capillaries of the central zone of the classical hepatic lobule (oval frame); b–f — CD31+ cells in the sinusoidal capillaries (arrows) and in the blood vessels of the portal zones and fibrous septa (stars).

Download (3MB)
6. Fig. 4. Changes in the area of CD31+ cells at different stages of the study.

Download (230KB)
7. Fig. 5. Change in the area of CK19+ cells at different stages of the study.

Download (215KB)
8. Fig. 6. Dynamics of the relative level of microRNAs during fibrogenesis with transition to cirrhosis.

Download (673KB)
9. Fig. 7. Changes in morphological, immunohistochemical and molecular genetic parameters, likely associated with the processes of initiation and progression of fibrosis with transition to cirrhosis.

Download (545KB)
10. Fig. 8. Correlation between the level of microRNAs, the number of interlobular veins, interlobular arteries, sinusoids, connective tissue area and CD31+, CK19+ cells.

Download (746KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies