Surfaces markers of human bone marrow multipotent mesecnhymal stromal cells


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

There are a lot of research projects ongoing, devoted to identification of human bone marrow derived multipotent mesenchymal stromal cells (MMSCs) unique surface epitopes. However there are no defined antigens or their combination that would specifically characterize MMSCs. Each research group uses its own panel of antibodies to identificate and isolate these cells. Herein we review mostly described and widely used specific markers of MMSCs.

Full Text

Restricted Access

About the authors

A. A. Pulin

Institute of general pathology and pathophysiology RАMS

Email: bozo.ilya@gmail.com

Лаборатория клеточной биологии и патологии развития

Russian Federation, Moscow

I. N. Saburina

Institute of general pathology and pathophysiology RАMS

Email: bozo.ilya@gmail.com

Лаборатория клеточной биологии и патологии развития

Russian Federation, Moscow

V. S. Repin

Institute of general pathology and pathophysiology RАMS

Author for correspondence.
Email: bozo.ilya@gmail.com

Лаборатория клеточной биологии и патологии развития

Russian Federation, Moscow

References

  1. Friedenstein A.J., Chailakhjan R.К., Lalykina К.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Кinet. 1970; 3: 393-403.
  2. Caplan A.I. Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells. Connect. Tissue Res. 1995; 31 Suppl: 9-14.
  3. Dominici M., Le Blanc К., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-7.
  4. Owen M., Friedenstein A.J. Stromal stem cells: marrow-derived osteogenic precursors. Proceedings of a symposium held at the Ciba Foundation. London. Oct. 13-15, 1987. London: John Wiley&Sons. 1988; 136: 42-60.
  5. Castro-Malaspina H., Gay R.E., Resnick G. et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 1980; 56: 289-301.
  6. Mets T., Verdonk G. In vitro aging of human bone marrow derived stromal cells. Mech. Ageing Dev. 1981; 16: 81-9.
  7. Piersma A.H., Brockbank К.G., Ploemacher R.E. et al. Characterization of fibroblastic stromal cells from murine bone marrow. Exp. Hematol. 1985; 13: 237-43.
  8. Colter D., Class R., DiGirolamo C.M., Prockop D.J. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. PNAS 2000; 97:3213-8.
  9. Caplan A.I. Mesenchymal stem cells. J. Ortho. Res. 1991; 9(5): 641-50.
  10. Clark B.R., Кeating A. Biology of bone marrow stroma. Ann. N.Y. Acad. Sci. 1995; 770: 70-8.
  11. Beresford N.N., Bennett J.H., Devlin C. et al. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 1992; 102: 341-51.
  12. Wakitani S., Saito T., Caplan A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995; 18(12): 1417-26.
  13. Pereira R.F., Halford K.W., 0'Hara M.D. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. P NAS 1995; 92(11): 4857-61.
  14. Kuznetsov S.A., Krebsbach P.H., Satomura K. et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 1997; 12(9): 1335-47.
  15. Bruder S.P., Jaiswal N., Haynesworth S.E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell Biochem. 1997; 64(2): 278-94.
  16. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 711-74.
  17. Azizi S.A., Stokes D.G., Augelli B.J. et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. PNAS 1998; 95(7): 3908-13.
  18. Kopen G.C., Prockop D.J., Phinney D.G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. PNAS 1999; 96(19): 10711-16.
  19. Chopp M., hang X.H., Li Y. et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. NeuroReport 2000; 11(13): 3001-5.
  20. Woodbury D., Schwarz E.J., Prockop D.J., Black I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 2000; 61(4): 364-70.
  21. Giordano A., Galderisi U., Marino I.R. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J. Cell Physiol. 2007; 211: 27-35.
  22. Prockop D.J., Olson S.D. Clinical trials with adult stem/progenitor cells for tissue repair: let's not overlook some essential precautions. Blood 2007; 109: 3147-51.
  23. Horwitz E.M., Prockop D.J., Fitzpatrick L.A. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 1999; 5: 309-13.
  24. Horwitz E.M., Gordon P.L., Koo W.K. et al. Isolated allogeneic bone marrow- derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: 1mplications for cell therapy of bone. PNAS 2002; 99: 8932-7.
  25. Koc O.N., Day J., Nieder M. et al. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-1H). Bone Marrow Transplant. 2002; 30: 215-22.
  26. Ringden O., Uzunel M., Rasmusson I. et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplant. 2006; 81: 1390-7.
  27. Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-7.
  28. Kolf C.M., Cho E., Tuan R.S. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Research Therapy. 2007; 9(1): 204.
  29. Simmons P.J., Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78: 55-62.
  30. Dennis J.E., Carbillet J.P., Caplan A.1., Charbord P. The STRO-1+ marrow cell population is multipotential. Cells Tissues 0rgans 2002; 170: 73-82.
  31. Gronthos S., annettino A.C., Hay S.J. et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J. Cell Sci. 2003; 116: 1827-35.
  32. Doherty M., Boot-Handford R.P., Grant M.E., Canfield A.E. Identification of genes expressed during the osteogenic differentiation of vascular pericytes in vitro. Biochem. Soc. Trans. 1998; 26(1): Suppl 4.
  33. Gronthos S., Franklin D.M., Leddy H.A. et al. Characterization of surface protein expression on human adipose tissue-derived stromal cells. J. Cell. Physiol. 2001; 189: 54-63.
  34. Walsh S., Jefferiss C., Stewart K. et al. Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1-4. Bone 2000; 27: 185-95.
  35. Garcia-Pacheco J.M., Oliver C., Kimatrai M. et al. Human decidual stromal cells express CD34 and STRO-1 and are related to bone marrow stromal precursors. Mol. Hum. Reprod. 2001; 7: 1151-7.
  36. Stewart K., Monk P., Walsh S. et al. STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res. 2003; 313: 281-90.
  37. Jones E.A., English A., Kinsey S.E. et al. Optimization of a flow cytometry- based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin. Cytom. 2006; 70(6): 391-9.
  38. Carter R.A., Wicks I.P. Vascular cell adhesion molecule 1 (CD106): a multifaceted regulator of joint inflammation. Arthritis Rheum. 2001; 44: 985-94.
  39. Haynesworth S.E., Baber M.A., Caplan A.I. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992; 13: 69-80.
  40. Bruder S.P., Horowitz M.C., Mosca J.D., Haynesworth S.E. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 1997; 21: 225-35.
  41. Barry F., Boynton R., Murphy M. et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2001; 289: 519-24.
  42. Yoo H.J., Yoon S.S., Park S. et al. Production and characterization of monoclonal antibodies to mesenchymal stem cells derived from human bone marrow. Hybridoma (Larchmt.) 2005; 24: 92-7.
  43. Barry F.P., Boynton R.E., Haynesworth S. et al. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Com. 1999; 265(1): 134-9.
  44. Shipp M.A., Look A.T. Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key! Blood 1993; 82(4): 1052- 70.
  45. Chen X.D., Qian H.Y., Neff L. et al. Thy-1 antigen expression by cells in the osteoblast lineage. J. Bone Miner. Res. 1999; 14: 362-75.
  46. Wiesmann A., Bbhring H.J., Mentrup C., Wiesmann H.P. Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Medicine 2006; 2: 8.
  47. Joyner C.J., Bennett A., Triffitt J.T. Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies. Bone 1997; 21(1): 1-6.
  48. Smith D.A., Monk P.A., Partridge L.J. Antibodies against human CD63 activate transfected rat basophilic leukemia (RBL-2H3) cells. Mol. Immunol. 1995; 32: 1339-44.
  49. McCullough B., Peppa D., Monk P.N. et al. A role for CD63 in signal transduction. Immunol. 1996; 89 Suppl 1: 0M114.
  50. Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye. J. Cell Sci. 2001; 114:4143-4151.
  51. Deschaseaux F., Charbord P. Human marrow stromal precursors are alpha 1 integrin subunit-positive. J. Cell Physiol. 2000; 184(3): 319-25.
  52. Wu X., Miyake K., Medina K.L. et al. Recognition of murine integrin beta 1 by a rat anti-stromal cell monoclonal antibody. Hybridoma 1994; 13(5): 409-16.
  53. Miyake K., Medina K.L., Hayashi S. et al. Monoclonal antibodies to Pgp- 1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J. Exp. Med. 1990; 171(2): 477-88.
  54. Goodwin H.S., Bicknese A.R., Chien S.N. et al. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol. Blood Marrow Transplant. 2001; 7(11): 581-8.
  55. Anjos-Afonso F., Bonnet D. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 2007; 109: 1298-306.
  56. Battula V.L., Bareiss P.M., Treml S. et al. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Different. 2007; 75: 279-91.
  57. Buhring H.J., Battula V.L., Treml S. et al. Novel markers for the prospective isolation of human MSC. Ann. N. Y. Acad. Sci. 2007; 1106: 262-71.
  58. Martinez C., Hofmann T.J., Marino R. et al. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 2007; 109: 4245-8.
  59. Gang E.J., Bosnakovski D., Figueiredo C.A. et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 2007; 109(4): 1743-1751.
  60. Jabbar A.A., Kazarian T., Hakobyan N., Valentino L.A. Gangliosides promote platelet adhesion and facilitate neuroblastoma cell adhesion under dynamic conditions simulating blood flow. Pediatr. Blood Cancer 2006; 46: 292-9.
  61. Gregory C.A., Ylostalo J., Prockop D.J. Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: a two- stage hypothesis for regulation of MSC fate. Sci. STKE. 2005; 2005 (294): pe37.
  62. DiGirolamo C.M., Stokes D., Colter D. et al. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol. 1999; 107: 275-81.
  63. Lee R.H., Hsu S.C., Munoz J. et al. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood. 2006; 107: 2153-61.
  64. Sekiya I., Larson B.L., Smith J.R. et al. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002; 20: 530-41.
  65. Colter D.C., Sekiya I., Prockop D.J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. PNAS 2001; 98: 7841-5.
  66. Smith J.R., Pochampally R., Perry A. et al. 1solation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 2004; 22: 823-31.
  67. Orschell-Traycoff C.M., Hiatt K., Dagher R.N. et al. Homing and engraftment potential of Sca-1(+)lin(-) cells fractionated on the basis of adhesion molecule expression and position in cell cycle. Blood 2000; 96: 1380-7.
  68. Szilvassy S.J., Meyerrose T.E., Grimes B. Effects of cell cycle activation on the short-term engraftment properties of ex vivo expanded murine hematopoietic cells. Blood 2000; 95: 2829-37.
  69. Glimm H., Eisterer W., Lee K. et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SC1D-beta2 microglobulin-null mice. J. Clin. Invest. 2001; 107: 199-206.
  70. Gothot A., van der Loo J.C., Clapp D.W., Srour E.F. Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune- deficient mice. Blood 1998; 92: 2641-9.
  71. Gazitt Y. Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 2004; 18: 1-10.
  72. Juarez J., Bendall L., Bradstock K. Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis. Curr. Pharm. Des. 2004; 10: 1245-59.
  73. Urbich C., Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 2004; 95: 343-53.
  74. Ji J.F., He B.P., Dheen S.T., Tay S.S. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 2004; 22: 415-27.
  75. Kucia M., Ratajczak J., Ratajczak M. . Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol. Cell. 2005; 97: 133-46.
  76. Sordi V., Malosio M.L., Marchesi F. et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106: 419-27.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2008 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies