CONDITION OF RIG-IAND NF-KB-SIGNAL PATHWAYS IN MONONUCLEAR CELLS OF WHOLE BLOOD OF PRACTICALLY HEALTHY PEOPLE AND RECONVENCENTS OF PNEUMONIA AFFECTED BY MITOGENIC STIMULATION



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The key role in the antiviral and antimicrobial defense of the body is played by the RIG-I and NF-kB signaling pathways. The RIG-I signaling pathway activates interferon-regulated factors IRF3 and IRF7, and the central component of the NF-kB signaling pathway, the nuclear transcription factor NF-kB, determines the production of endogenous antimicrobial peptides and interferons by cells. One of the key regulators of the RIG-I signaling pathway is the mitochondrial protein MAVS, which integrates signals from receptors that recognize pathogenicity patterns. The influence of various factors, such as bacterial toxins, free radicals, reactive oxygen species, leads to MAVS dysfunction, impaired antiviral resistance and the progression of viral infection. However, despite the important role of the proteins of the RIG-I-pathway and the components of the NF-KB-signaling pathway in ensuring the body's resistance to infections and sanogenesis, their significance in the postclinical phase has not been fully studied. The aim of the study was to evaluate the content of the components of RIG-I and NF-kB signaling pathways in mononuclear cells of whole blood of healthy individuals and pneumonia convalescents after exposure to a complex mitogen. The enzyme-linked immunosorbent assay determined the content of components of the NF-kB signaling pathway (p50, p65, c-Rel, RelB, NF-kB2), protein kinases of the NF-kB nuclear transcription factor inhibitor (IkB), and RIG-I- proteins in mononuclear cells of whole blood the signal path (TAK1, TBK1, TRIM25, TMEM173, RNF125, IRF3, IRF7, MAVS), RIG-I-dependent helicase (LGP2), the level of phosphorylation of protein kinase p38 and IkB, as well as the production of whole blood cells IL-4, IL-, were evaluated 12, RANTES, cathelicidin and interferons (IFN-p and IFNa). It was established that in the subclinical phase of community-acquired bacterial pneumonia in mononuclear cells of whole blood after stimulation with a complex mitogen containing lipopolysaccharide, the content of RelB, MaVS, DHX58, and IRF7 decreased compared to practically healthy individuals, p38 protein kinase dephosphorylation was noted. In contrast, the concentrations of IKKa, IKKp, the level of phosphorylation of kBa, the protein content of TRIM25, TMEM173, OTuD5, RNF125 and tBk1 were increased. These changes were accompanied by a statistically significant decrease in the production of IL-4, IL-12, RANTES, cathelicidin and IFN-p against the background of an increase in the level of IFNa. The effect on the mononuclear cells of whole blood of a complex mitogen led to a change in the ratio of the components of the signaling pathways that determine the antibacterial and antiviral defense of the body. In patients with pneumonia, against the background of mitogenic stimulation, the production of cathelicidin,

Full Text

Restricted Access

About the authors

I. V Terekhov

Tula State Medical University

Email: trft@mail.ru
Tula, Russia

V. S Nikiforov

Northwestern Medical University n. a. I.I. Mechnikov

Saint-Petersburg, Russia

S. S Bondar

Tula State Medical University

Tula, Russia

N. V Bondar

Orel State University

Orel, Russia

V. K Parfenyuk

Saratov State Medical University n. a. V.I. Rasumoskij

Sairatov, Russia

References

  1. Kato H., Oh S.W., Fujita T. RIG-I-Like Receptors and Type I Interfer-onopathies. J. Interferon Cytokine Res. 2017; 37(5): 207-13.
  2. Kell A.M., Gale M. RIG-I in RNA virus recognition. Virology 2015; 479-80: 110-21.
  3. Komuro A., Bamming D., Horvath C.M. Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine 2008; 43(3): 350-8.
  4. Green R., Ireton R.C., Gale M. Jr. Interferon-stimulated genes: new platforms and computational approaches. Mamm. Genome 2018; 29(7-8): 593-602.
  5. Hakansson A.P., Bergenfelz C. Low NF-kB Activation and Necrop-tosis in Alveolar Macrophages: A New Virulence Property of Streptococcus pneumoniae. J. Infect. Dis. 2017; 216(4): 402-4.
  6. Лебедева М.Н., Грищенко А.В. Особенности течения повторных внебольничных пневмоний у военнослужащих по призыву. Военно-медицинский журнал 2009; 330(7): 24-8. [Lebedeva M.N., Grishchenko A.V. Peculiarities of the course of the repeated out-hospital pneumonia by compulsory-duty servicemen. Military Medical Journal 2009; 330(7): 24-8 (In Russ.)].
  7. Терехов И.В., Никифоров В.С., Бондарь С.С. Изменение содержания компонентов IL/TOLL-сигнального пути и NF-kB в мононуклеарных клеток цельной крови под влиянием низкоинтенсивного электромагнитного излучения частотой 1 ГГц. Гены и клетки 2017; 12 (2): 90-6.
  8. Терехов И.В., Бондарь С.С., Хадарцев А.А. Лабораторное определение внутриклеточных факторов противовирусной защиты при внебольничной пневмонии в оценке эффектов низкоинтенсивного СВЧ-излучения. Клиническая лабораторная диагностика 2016; 61(6): 380-4.
  9. Wong E.T., Tergaonkar V. Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clin. Sci. (Lond) 2009; 116(6): 451-65.
  10. Sweeney S.E. Targeting interferon regulatory factors to inhibit activation of the type I IFN response: implications for treatment of autoimmune disorders. Cell. Immunol. 2011; 271(2): 342-9.
  11. Honda K., Takaoka A., Taniguchi T. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 2006; 25: 349-60.
  12. Czerkies M., Korwek Z., Prus W. et al. Cell fate in antiviral response arises in the crosstalk of IRF, NF-kB and JAK/STAT pathways. Nat. Commun. 2018; 9(1): 493.
  13. Терехов И.В., Хадарцев А.А., Бондарь С.С. и др. Экспрессия TOLL- и NOD-подобных рецепторов, уровень в мононуклеарных клетках цельной крови регуляторных факторов противовирусной защиты и продукция интерферона под влиянием низкоинтенсивного микроволнового излучения частотой 1 ГГц. Вестник новых медицинских технологий. Электронное издание 2016; 10(3): 223-33. URL: http:// www.medtsu.tula.ru/VNMT/Bulletin/E2016-3/2-22.pdf (дата обращения: 17.09.2016).
  14. Maier B.B., Hladik A., Lakovits K. et al. Type I interferon promotes alveolar epithelial type II cell survival during pulmonary Streptococcus pneumoniae infection and sterile lung injury in mice. Eur. J. Immunol. 2016; 46(9): 2175-86.
  15. Stephan A., Batinica M., Steiger J. et al. LL37: DNA complexes provide antimicrobial activity against intracellular bacteria in human macrophages. Immunology 2016; 148(4): 420-32.
  16. Culley F.J., Pennycook A.M., Tregoning J.S. et al. Role of CCL5 (RAN-TES) in viral lung disease. J. Virol. 2006; 80(16): 8151-7.
  17. Palaniappan R., Singh S., Singh U.P. et al. CCL5 modulates pneumococcal immunity and carriage. J. Immunol. 2006; 176(4): 2346-56.
  18. Gack M.U., Shin Y.C., Joo C.H. et al. TRIM25 RING-finger E3 ubiq-uitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007; 446(7138): 916-20.
  19. Wertz I.E., Dixit V.M. Signaling to NF-kappaB: regulation by ubiquiti-nation. Cold Spring Harb. Perspect. Biol. 2010; 2(3): a003350.
  20. Bodur C., Kazyken D., Huang K. et al. The IKK-related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists. EMBO J. 2018; 37(1): 19-38.
  21. Marinho F.V., Benmerzoug S., Oliveira S.C. et al. The Emerging Roles of STING in Bacterial Infections. Trends Microbiol. 2017; 25(11): 906-18.
  22. Терехов И.В., Хадарцев А.А., Бондарь С.С. Состояние рецептор-зависимых сигнальных путей в агранулоцитах периферической крови реконвалесцентов внебольничной пневмонии под влиянием микроволнового излучения. Вопросы курортологии, физиотерапии и лечебной физической культуры 2016; 93(3): 23-8.
  23. Бондарь С.С., Логаткина А.В., Терехов И.В. Влияние низкоинтенсивного микроволнового излучения частотой 1 ГГц на состояние MAPK/ SAPK-сигнального пути в мононуклеарных лейкоцитах. Биомедицинская радиоэлектроника 2016; 10: 28-36.
  24. Солодухин К.А., Никифоров В.С., Бондарь С.С. и др. Влияние низкоинтенсивного СВЧ-облучения на внутриклеточные процессы в мононуклеарах при пневмонии. Медицинская иммунология 2012; 14(6): 541-4.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies