Reserve and basal cells of epithelia of cervix uteri as a source of cervical neoplasies by human papilloma viruses



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

As progenitor of cervical epithelium consider reserve and basal cells. They as human stem cells possess ability of self-updating, manufacture of the differentiated functional posterity and settle down in a niche. They supports the population by means of mitosis. For a reserve cell it is characteristic expression p63, bcl-2, keratins 5, 7, 17, for basal cells - p63, bcl-2, keratins 5, 7, 10, 13, 14, 17. Reserve cells are a source of development of columnar and squamous epithelia of cervix uteri, basal cells - only squamous epithelium. Reserve and basal cells are cells-targets for human papilloma virus (HPV) which genetic changes can serve as the reason can-cerogenesis. For "precancerous” cervical intraepithelial neoplasies in prevailing number of supervision spontaneous regress is characteristic. The role of integration of DNA HPV in cancerogenesis of cervix uteri does not find unequivocal acknowledgement in DNA of a cell. Modern representations about cancer stem cell of cervix uteri characterize its similarity to stem cells of cervical epithelium.

Full Text

Restricted Access

About the authors

V. A Ershov

Municipal Clinical Oncology Dispensary

Email: ershov@gkod.spb.ru
Saint Petersburg, Russia

V. M Mikhailov

Institute of Cytology Russian Academy of Science

Saint Petersburg, Russia

V. S Chirsky

S.M. Kirov Military Medical Academy

Saint Petersburg, Russia

References

  1. Hernandez-Hernandez D.M., Apresa-Garcia T., Patlan-Perez R.M. Epidemiological overview of uterine cervical cancer. Rev. Med. Inst. Mex. Seguro. Soc. 2015; 53(Suppl. 2): 154-61.
  2. Lorenzi A.T., Syrjanen K.J., Longatto-Filho A. Human papillomavirus (HPV) screening and cervical cancer burden. A Brazilian perspective. Virol. J. 2015; 12: 112.
  3. Каприн А.Д., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению России в 2016 году. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИРЦ» Минздрава России, 2017: 236.
  4. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2002; 2(5): 342-50.
  5. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. (Lond.) 2006; 110: 525-41.
  6. Jung S.H., Choi Y.J., Kim M.S. et al. Progression of naive intraepi-thelial neoplasia genome to aggressive squamous cell carcinoma genome of uterine cervix. Oncotarget 2015; 6(6): 4385-93.
  7. Costa C., Espinet B., Molina M.A. et al. Analysis of gene status in cervical dysplastic lesions and squamous cell carcinoma using tissue microarrays. Histol. Histopathology 2009; 24(7): 821-9.
  8. Киселев В.И., Муйжнек Е.Л. Молекулярные механизмы развития дисплазии шейки матки: новые знания - новые возможности. М.; 2012: 19.
  9. Зильбер Л.А. Вирусо-генетическая теория возникновения опухолей. М.: Наука, 1968: 344.
  10. Arias-Pulido H., Peyton C.L., Joste N.E. et al. Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J. Clin. Microbiol. 2006; 44(5): 1755-62.
  11. Badaracco G., Venuti А. Physical status of HPV types 16 and 18 in topographically different areas of genital tumours and in paired tumour-free mucosa. Int. J. Oncol. 2005; 27(1): 161-7.
  12. Ершов В.А. Неоплазии эпителия шейки матки. СПб.: «Человек», 2016: 200.
  13. Thierry F. Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 2009; 384(2): 375-9.
  14. Pyeon D., Pearce S.M., Lank S.M. et al. Establishment of human papillomavirus infection requires cell cycle progression. PloS Pathog. 2009: 5(Issue 2): e1000318.
  15. Griesser H., Sander H., Hilfrich R.A. Correlation of immunochemical detection of HPV L1 capsid protein in Pap smears with regression of high risk positive mid/moderate dysplasia. AQCH 2004; 26(5): 241-5.
  16. Milligan S.G., Veerapraditsin T., Ahamet B. et al. Analysis of novel human papillomavirus type 16 late mRNAs in differentiated W12 cervical epithelial cells. Virology 2007; 360(1): 172-81.
  17. Репин В.С., Сабурина И.Н. Клеточная биология развития. М.: Институт стволовых клеток человека. 2010: 300.
  18. Huh Y.H., Noh M., Burden F.R. et al. Sparse feature selection identifies H2A.Z as a novel, pattern-specific biomarker for asymmetrically self-renewing distributed stem cells. Stem Cell Res. 2015; 14(2): 144-54.
  19. Попов Б.В. Введение в клеточную биологию стволовых клеток: учебно-методическое пособие. СПб.: СпецЛит, 2010: 319.
  20. Martens J.E., Smedts F., van Muyden R.C. et al. Reserve cells in human uterine cervical epithelium are derived from mullerian epithelium at midgestational age. Int. J. Gynecol. Pathol. 2007; 26(4): 463-8.
  21. Arango N.A., Kobayashi A., Wang Y. et al. A mesenchymal perspective of Mullerian duct differentiation and regression in Amhr2-lacZ mice. Mol. Reprod. Dev. 2008; 75(7): 1154-62.
  22. Kurita T. Normal and abnormal epithelial differentiation in the female reproductive tract. Differentiation 2011; 82(3): 117-26.
  23. Herfs M., Vargas S.O., Yamamoto Y. et al. A novel blueprint for ‘top down’ differentiation defines the cervical squamocolumnar junction during development, reproductive life, and neoplasia. J. Pathol. 2013; 229(3): 460-8.
  24. Martens J.E., Arends J., Van der Linden P.J. et al. Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Res. 2004; 24(2B): 771-5.
  25. Martens J.E., Smedts F.M., Ploeger D. et al. Distribution pattern and marker profile show two subpopulations of reserve cells in the endocervical canal. Int. J. Gynecol. Pathol. 2009; 28(4): 381-8.
  26. Hoogduin K.J., Hopman A.N., Ramaekers F.C. et al. BCL2 and keratin 5 define the uterine-cervix-isthmus junction, a transition between endocervical and tubal-like epithelium. Int. J. Gynecol. Pathol. 2013; 32(1): 122-30.
  27. Hwang L.Y., Ma Y., Shiboski S.C. et al. Active squamous metaplasia of the cervical epithelium is associated with subsequent acquisition of human papillomavirus 16 infection among healthy young women. J. Infect. Dis. 2012; 206(4): 504-11.
  28. Sivridis E., Karpathiou G., Malamou-Mitsi V. et al. Intestinal-type metaplasia in the original squamous epithelium of the cervix. Eur. J. Gynaecol. Oncol. 2010; 31(3): 319-22.
  29. Suo Z., Holm R., Nesland J.M. Squamous cell carcinomas. An immunohistochemical study of cytokeratins and involucrin in primary and metastatic tumours. Histopathology 1993; 23(1): 45-54.
  30. Ivanova P., Atanasova G., Poumay Y. et al. Knockdown of PKD1 in normal human epidermal keratinocytes increases mRNA expression of keratin 10 and involucrin: early markers of keratinocyte differentiation. Arch. Dermatol. Res. 2008; 300(3): 139-45.
  31. Fichorova R.N., Rheinwald J.G., Anderson D.J. Generation of papillomavirus-immortalized cell lines from normal human ectocervical, endo-cervical, and vaginal epithelium that maintain expression of tissue-specific differentiation proteins. Biol. Reprod. 1997; 57(4): 847-55.
  32. Сазонова В.Ю., Федорова В.Е., Данилова Н.В. Алгоритм дифференциальной диагностики предраковых и регенераторных изменений эпителия шейки матки. Архив патологии 2013; 75(1): 46-51.
  33. Poulson N.D., Lechler T. Robust control of mitotic spindle orientation in the developing epidermis. J. Cell Biol. 2010; 191(5): 915-22.
  34. Nguyen C.L., Munger K. Human papillomavirus E7 protein deregulates mitosis via an association with nuclear mitotic apparatus protein 1. J. Virol. 2009; 83(4): 1700-07.
  35. Brizzi M.F., Tarone G., Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 2012; 24(5): 645-51.
  36. Frisch S.M., Screaton R.A. Anoikis mechanisms. Curr. Opin. Cell Biol. 2001; 13(5): 555-62.
  37. O'Brien L.E, Bilder D. Beyond the niche: tissue-level coordination of stem cell dynamics. Annu. Rev. Cell Dev. Biol. 2013; 29: 107-36.
  38. Lander A.D., Kimble J., Clevers H. et al. What does the concept of the stem cell niche really mean today? BMC Biol. 2012; 10: 19.
  39. Voog J., Jones D.L. Stem cells and the niche: a dynamic duo. Cell Stem Cell 2010; 6(2): 103-15.
  40. Laine S.K., Hentunen T., Laitala-Leinonen T. Do microRNAs regulate bone marrow stem cell niche physiology? Gene 2012; 497(1): 1-9.
  41. Lee Y., El Andaloussi S., Wood M.J. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 2012; 21 (R1): R125-34.
  42. Bang C., Thum T. Exosomes: new players in cell-cell communication. Int. J. Biochem. Cell Biol. 2012; 44(11): 2060-4.
  43. Barker N., Tan S., Clevers H. Lgr proteins in epithelial stem cell biology. Dev. 2013; 140(12): 2484-94.
  44. Munoz-Descalzo S., de Navascues J., Arias A.M. Wnt-Notch signalling: an integrated mechanism regulating transitions between cell states. Bioessays 2012; 34(2): 110-8.
  45. Michel M., Kupinski A.P., Raabe I. et al. Hh signalling is essential for somatic stem cell maintenance in the Drosophila testis niche. J. Cell Sci. 2012; 125: e1.
  46. Di Maggio N., Mehrkens A., Papadimitropoulos A. et al. Fibroblast growth factor-2 maintains a niche-dependent population of self-renewing highly potent non-adherent mesenchymal progenitors through FGFR2c. Stem Cells 2012; 30(7): 1455-64.
  47. Salm S., Burger P.E., Wilson E.L. TGF-p and stem cell factor regulate cell proliferation in the proximal stem cell niche. Prostate 2012; 72(9): 998-1005.
  48. Laperle A., Hsiao C., Lampe M. et al. a-5 Laminin synthesized by human pluripotent stem cells promotes self-renewal. Stem Cell Reports 2015; 5(2): 195-206.
  49. Mokos Z.B., Mosler E.L. Advances in a rapidly emerging field of hair follicle stem cells research. Coll. Antropol. 2014; 38(1): 373-8.
  50. Kuang S., Kuroda K., LeGrand F. et al. Asymmetrick self-reneval and commitment of satellite stem cells in muscle. Cell 2007; 129(5): 999-1010.
  51. Викторов И.В. Стволовые клетки мозга млекопитающих: биология стволовых клеток in vivo и in vitro. Изв. Акад. Наук. Серия Биология. 2001; 6: 646-55.
  52. Mcnairn A.J. , Guasch G. Epithelial transition zones: merging microenvironments, niches, and cellular transformation. Eur. J. Dermatol. 2011; Suppl 2: 21-8.
  53. Yasumoto S., Kunimura C., Kikuchi K. et al. Telomerase activity in normal human epithelial cells. Oncogene 1996; 13(2): 433-9.
  54. Mizushima T., Asai-Sato M., Akimoto K. et al. Aberrant expression of the cell polarity regulator aPKCλ/ι is associated with disease progression in cervical ilntraepithelial neoplasia (CIN): a possible marker for predicting CIN prognosis. Int. J. Gynecol. Pathol. 2016; 35(2): 106-17.
  55. Smedts F., Ramaekers F.C., Hopman A.H. The two faces of cervical adenocarcinoma in situ. Int. J. Gynecol. Pathol. 2010; 29(4): 378-85.
  56. Clarke M.F. Oncogenes, self-renewal and cancer. Pathol. Biol. (Paris) 2006; 54(2): 109-11.
  57. Cho R.W., Clarke M.F. Recent advances in cancer stem cells. Curr. Opin. Genet. Dev. 2008; 18(1): 48-53.
  58. Немцова М.В. Клеточная гетерогенность в опухоли. Медицинская генетика. 2012; (11): 3-12.
  59. Lopez J., Poitevin A., Mendoza-Martinez V. et al. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer 2012; 12: 48.
  60. Bortolomai I., Canevari S., Facetti I. et al. Tumor initiating cells: development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle 2010; 9(6): 1194-206.
  61. Gu W., Yeo E., McMillan N. et al. Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther. 2011; 18(12): 897-905.
  62. Lopez J., Ruiz G., Organista-Nava J. et al. Human papillomavirus infection and cancer stem cells of tumors from the uterine cervix. Open Virol. J. 2012; 6 (Suppl. 2: M8): 232-40.
  63. Liu W., Gao Q., Chen K. et al. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. Oncol. Rep. 2014; 32(5): 1853-60.
  64. Ji J., Wei X., Wang Y. Embryonic stem cell markers Sox-2 and OCT4 expression and their correlation with WNT signal pathway in cervical squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2014; 7(5): 2470-6.
  65. Yang Z., Pan X., Gao A. et al. Expression of Sox2 in cervical squamous cell carcinoma. J. BUON 2014; 19(1): 203-6.
  66. Yao T., Chen Q., Zhang B. et al. The expression of ALDH1 in cervical carcinoma. Med. Sci. Monit. 2011; 17(8): HY21-26.
  67. Stefanidis K., Patta J., Pergialiotis V. et al. Imiquimod treatment effectively reduces the percentage of viable cells in a cervical carcinomacell line but does not affect the expression of HLA-G or OCT-4. J. Stem Cells 2015; 10(4): 217-23.
  68. Feng D., Peng C., Li C. et al. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol. Rep. 2009; 22(5): 1129-34.
  69. Lobo N.A., Shimono Y., Qian D. et al. The biology of cancer stem cells. Annu Rev. Cell Dev. Biol. 2007; 23: 675-99.
  70. Diehn M., Cho R.W., Clarke M.F. Therapeutic implications of the cancer stem cell hypothesis. Semin. Radiat. Oncol. 2009; 19(2): 78-86.
  71. Ailles L.E., Weissman I.L. Cancer stem cells in solid tumors. Curr. Opin. Biotechnol. 2007; 18(5): 460-6.
  72. Lizarraga F., Espinosa M., Ceballos-Cancino G. et al. Tissue inhibitor of metalloproteinases-4 (TIMP-4) regulates stemness in cervical cancer cells. Mol. Carcinog. 2016; 55(12): 1952-61.
  73. Schneider J., Eiro N., Perez-Fernandez R. et al. Human uterine cervical stromal stem cells (hUCESCs): why and how they exert their antitumor activity. Cancer Genomics Proteomics 2016; 13(5): 331-7.
  74. Eiro N., Sendon-Lago J., Seoane S. et al. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget 2014; 5(21): 10692-708.
  75. Vickers K. C, Remaley A.T. Lipid-based carriers of microRNAs and intercellular communication. Curr. Opin. Lipidol. 2012: 23(2): 91-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies