Clinical case of mandibular fibro-osseous lesions with giant multinuclear cells: molecular-genetic differential diagnostic analysis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The giant cell tumors of maxillofacial bones include several barely differentiable diseases with diverse prognoses. A case of a giant cell tumor in an 18-year-old man is described. Clinical, instrumental and laboratory examination did not allow to establish an accurate diagnosis. Molecular genetic test by New generation sequencing (NGS) of tumor tissues and blood identified mutation p. 1424 C> A; p.Pro475His in the SH3BP2 gene, previously described in patients with the so-called cherubism, that determined the tactic of treatment. Carrying out an oncogenetic study allows the differential diagnosis of such morphologically similar conditions with a giant cell component as a multiorgan form of fibrous dysplasia, reparative granulomas, Noonan syndrome, Sturge-Weber-Crabbe syndrome, juvenile ossifying fibroma.

Full Text

Restricted Access

About the authors

E. G Sviridov

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Email: cmfsurgery@yandex.ru
Moscow, Russia

R. V Deev

Human Stem Cells Institute; I.I. Mechnikov North-Western State medical University

Email: cmfsurgery@yandex.ru
Moscow, Russia; Saint-Petersburg, Russia

N. A Redko

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Email: cmfsurgery@yandex.ru
Moscow, Russia

A. Y Drobyshev

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Email: cmfsurgery@yandex.ru
Moscow, Russia

A. I Kadykova

Forensic Bureau of the Kaliningrad Region

Email: cmfsurgery@yandex.ru
Kaliningrad, Russia

References

  1. Eversole R., Su L., ElMofty S. Benign fibro-osseous lesions of the craniofacial complex. A review. Head Neck Pathol. 2008; 2(3): 177-202.
  2. Нейштадт Э.Л., Маркочев А.Б. Опухоли и опухолеподобные заболевания костей. СПб.: ООО «Издательство ФОЛИаНт», 2007.
  3. Зайратьянц О.В., Кременецкая Л.Е., Рябоштанова Е.И. и др. Заболевания челюстных костей. В кн.: Патологическая анатомия: национальное руководство. М.: ГЭОТАР-Медиа, 2013: 472-90.
  4. Bhattacharya S., Mishra R.K. Fibrous dysplasia and cherubism. Indian J. Plast. Surg. 2015; 48(3): 236-48.
  5. Degala S., Mahesh K.P., Monalisha. Cherubism: A Case Report. J. Maxillofac. Oral Surg. 2015; 14(Suppl 1): 258-62.
  6. Genome in a Bottle. National Institute of Standards and Technology https://www.nist.gov/programs-projects/genome-bottle.
  7. Ozkan Y., Varol A., Turker N. et al. Clinical and radiological evaluation of cherubism: A sporadic case report and review of the literature. Int. J. Pediatr. Otorhinolaryngol. 2003; 67: 1005-12.
  8. Amalachandran J., Sivathapandi T., Simon S. et al. Cherubism: A Rare Fibro-Osseous Disorder Characterized and Diagnosed by one Stop Imaging with Technetium-99m Methylene Diphosphonate Bone Scintigraphy Integrated with Single-Photon Emission Computed Tomography-Computed Tomography. Indian J. Nucl. Med. 2019; 34(1): 62-5.
  9. Niranjan B., Shashikiran N.D., Singla S., Kasetty S. Non-hereditary cherubism. J. Oral Maxillofac. Pathol. 2014; 18(1): 84-8.
  10. Jones W.A. Familial multilocular cystic disease of the jaws. Am. J. Cancer. 1933; 17: 946-50.
  11. Jones W.A. Further observations regarding familal multilocular cystic disease of the jaws. Br. J. Radiol. 1938; 11: 227-41.
  12. Kannu P., Baskin B., Bowdin S. Cherubism. Gene Reviews Internet. 2007 https://www.ncbi.nlm.nih.gov/books/NBK1137/pdf/Book-shelf_NBK1137.pdf
  13. Katz J.O., Dunlap C.L., Ennis R.L. Cherubism: report of a case showing regression without treatment. J. Oral. Maxillofac. Surg. 1992; 50: 301-03.
  14. Quan F., Grompe M., Jakobs P. et al. Spontaneous deletion in the FMR1 gene in a patient with fragile X syndrome and cherubism. Human Molecular. 1995; 4(9): 1681-84.
  15. Mc Clendon J.L., Anderson D.E., Cornelius E.A. Cherubism - hereditary fibrous dysplasia of the jaws. Oral. Surg. 1962; 15: 17-41.
  16. Kalantar Motamedi M.H. Treatment of cherubism with locally aggressive behavior presenting in adulthood: report of four cases and a proposed new grading system. J. Oral & Maxillofac. Surg. 1998; 56(11): 1336-42.
  17. Raposo-Amaral C.E., de Campos G.M., Warren S.M. et al. Two-stage surgical treatment of severe cherubism. Annals. Plastic. Surger. 2007; 58 (6): 645-51.
  18. Thompson N. Cherubism: familial fibrous dysplasia of the jaws. British J. Plast. Surg. 1959; 12: 89-103.
  19. Kadlub N., Vazquez M., Galmiche L. et al. The Calcineurin Inhibitor Tacrolimus as a New Therapy in Severe Cherubism. J. Bone and Mineral Res. 2015; 30(5): 878-85.
  20. Kozakiewicz M., Perczynska-Partyka W., Kobos J. Cherubism - clinical picture and treatment. Oral. Dis. 2001; 7: 123-30.
  21. Ueki Y., Tiziani V., Santanna C. et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat. Genet. 2001: 28: 125-6.
  22. Deshmukh R., Joshi S., Deo P.N. Nonfamilial cherubism: A case report and review of literature. J. Oral Maxillof. Pathol. 2017; 21(1): 181.
  23. Reichenberger E.J., Levine M.A., Olsen B.R. et al. The role of SH3BP2 in the pathophysiology of cherubism. Orphanet J. Rare Dis. 2012; 7(5).
  24. Takayanagi H., Kim S., Koga T. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 2002; 3: 889-901.
  25. Ishida N., Hayashi K., Hoshijima M. et al. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J. Biol. Chem. 2002; 277: 41147-56.
  26. Hirotani H., Tuohy N.A., Woo J.T. et al. The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J. Biol. Chem. 2004; 279: 13984-92.
  27. Bellows C.G., Ishida H., Aubin J.E. et. al. Parathyroid hormone reversibly suppresses the differentiation of osteoprogenitor cells into functional osteoblasts. Endocrinol. 1990; 127: 3111-16.
  28. Komarova S.V., Pereverzev A., Shum J.W. et al. Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. PNAS USA 2005; 102: 2643-48.
  29. Lietman S.A., Yin L., Levine M.A. SH3BP2 is an activator of NFAT activity and osteoclastogenesis. Biochem. Biophys. Res. Commun. 2008; 371: 644-48.
  30. Лопатин А.В., Кугушев А.Ю., Ясонов С.А. Таргетная терапия херувизма у ребенка 9 лет. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2018; 17(3): 85-92. (Lopatin A.V., Kugushev A.Yu., Yasonov S.A. Targeted cherubism therapy in a 9-year-old child. Questions of hematology/oncology and immunopathology in pediatrics 2018; 17 (3): 85-92).
  31. Burke A., Collins M.T., Boyce A.M. Fibrous Dysplasia of Bone: Craniofacial and Dental Implications. Oral Dis. 2017; 23(6): 697-708.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies