The effect of neoadjuvant chemotherapy on the level of bone marrow progenitor cells in the blood of patients with invasive breast carcinoma


Cite item

Abstract

The breast cancer occupies the first place in the structure of women cancer morbidity and mortality for many years. The treatment of this pathology includes two types of chemotherapy: neoadjuvant and adjuvant. Neoadjuvant chemotherapy (NACT) follows surgical treatment and makes it possible to assess the sensitivity of the tumor to the medication. The obtained data can be used to correct the subsequent adjuvant chemotherapy. However, there is a lot of evidence of the ability of NACT to increase the risk of progression of malignant tumors. The bone marrow progenitor cells are components of premetastatic niches. Objective: to assess the effect of neoadjuvant chemotherapy on the level of bone marrow progenitor cells in the blood of patients with breast cancer. In a prospective study were included 31 patients newly diagnosed with invasive breast cancer, of which 17 patients was performed neoadjuvant chemotherapy, 14 patients - without neoadjuvant chemotherapy. The method of multicolor flow cytometry was used to assess the dynamics of bone marrow progenitor cells (hematopoietic stem cells (HSC) and hematopoietic progenitor cells (HPC), endothelial progenitor cells (EPC), mesenchymal stem cells (MSC) in blood of patients with invasive carcinoma of a non-specific type during NACT. It has been shown that neoadjuvant chemotherapy leads to a statistically significant increase the number of endothelial cell precursor cells (EPC) in the blood of patients with invasive breast carcinoma (p = 0.036). The level of mesenchymal stem cells in the blood of patients with invasive breast carcinoma increases at the level of a statistical trend (p = 0.06) during neoadjuvant chemotherapy. Based on these data we can conclude that neoadjuvant chemotherapy enhances the recruitment of bone marrow cells involved in the formation of premetastatic niches.

Full Text

Restricted Access

About the authors

E. V Kaigorodova

Cancer Research Institute Tomsk National Research Medical Center; Siberian State Medical University

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

V. M Perelmuter

Cancer Research Institute Tomsk National Research Medical Center

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

A. S Orehov

Siberian State Medical University

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

N. V Fedulova

Cancer Research Institute Tomsk National Research Medical Center

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

N. A Tarabanovskaya

Cancer Research Institute Tomsk National Research Medical Center

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

E. I Simolina

Cancer Research Institute Tomsk National Research Medical Center

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

O. E Savelieva

Cancer Research Institute Tomsk National Research Medical Center

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

L. A Tashireva

Cancer Research Institute Tomsk National Research Medical Center

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

N. V Cherdyntseva

Cancer Research Institute Tomsk National Research Medical Center; Laboratory for Translational Cellular and Molecular Biomedicine of TSU

Email: kaigorodova@oncology.tomsk.ru
Tomsk, Russia

References

  1. Paget S. The distribution of secondary growths in cancer of the breast. The Lancet 1889; 133(3421): 571-3.
  2. Kaplan R.N., Riba R.D., Zacharoulis S. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820-7.
  3. Psaila B., Lyden D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 2009; 9(4): 285-93.
  4. Wels J., Kaplan R.N., Rafii S. et al. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 2008; 22(5): 559-74.
  5. Peinado H., Lavotshkin S., Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 2011; 21(2): 139-46.
  6. Karnoub A.E., Dash A.B., Vo A.P. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162): 557-63.
  7. Docheva D., Haasters F., Schieker M. Mesenchymal stromal cells and their cell surface receptors. Curr. Rheumatol. Rev. 2008; 4(3): 155-60.
  8. Zhang Qi., Fujino M., Xu J. et al. The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cell s in Allo- and Autoimmunity. Mediators Inflamm. 2015; 2015: 421927.
  9. Grande F., Giancotti G., loele G. et al. An update on small molecules targeting CXCR4 as starting points for the development of anti-cancer therapeutics. Eur. J. Med. Chem. 2017; 139: 519-30.
  10. Kopp H.G., Ramos C.A., Rafii S. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr. Opin. Hematol. 2006; 13(3): 175-81.
  11. Kaigorodova E., Tarabanovskaya N., Simolina E. et al. Circulating tumor cells and bone marrow progenitor cells in the blood of breast cancer patients in the dynamics of neoadjuvant chemotherapy. European Journal of Cancer Supplements 2015; 13(1): 22.
  12. Кайгородова Е.В., Перельмутер В.М., Савельева О.Е. и др. Оценка взаимосвязи уровня клеток-предшественников эндотелиоцитов в крови и в опухоли у больных инвазивной карциномой молочной железы. Международный журнал прикладных и фундаментальных исследований 2016; 11(1): 162-3.
  13. Jain S., Ward M.M., O'Loughlin J. et al. Incremental increase in VEGFR1+ hematopoietic progenitor cells and VEGFR2+ endothelial progenitor cells predicts relapse and lack of tumor response in breast cancer patients. Breast Cancer Res. Treat. 2012; 132(1): 235-42.
  14. Middleton J.D., Stover D.G., Hai T. Chemotherapy-Exacerbated Breast Cancer Metastasis: A Paradox Explainable by Dysregulated Adaptive-Response. Int. J. Mol. Sci. 2018; 19(11): 3333.
  15. Perelmuter V.M., Tashireva L.A., Savelieva O.E. et al. Mechanisms behind prometastatic changes induced by neoadjuvant chemotherapy in the breast cancer microenvironment. Breast Cancer (Dove Med. Press) 2019; 11: 209-19.
  16. Gianni L., Baselga J., Eiermann W. et al. Phase III trial evaluating the addition of paclitaxel to doxorubicin followed by cyclophosphamide, methotrexate, and fluorouracil, as adjuvant or primary systemic therapy: European Cooperative Trial in Operable Breast Cancer. J. Clin. Oncol. 2009; 27: 2474-81.
  17. Shaked Y., Henke E., Roodhart J.M.L. et al. Rapid Chemotherapy-Induced Acute Endothelial Progenitor Cell Mobilization: Implications for Antiangiogenic Drugs as Chemosensitizing Agents. Cancer Cell 2008; 14: 263-73.
  18. Kidd S., Spaeth E., Dembinski J.L. et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescence imaging. Stem Cells 2009; 27: 2614-23.
  19. Beckermann B.M., Kallifatidis G., Groth A. et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br. J. Cancer 2008; 99: 622-31.
  20. Karnoub A.E., Dash A.B., Vo A.P. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557-63.
  21. Kaigorodova E.V., Savelieva O.E., Tashireva L.A. et al. Heterogeneity of Circulating Tumor Cells in Neoadjuvant Chemotherapy of Breast Cancer. Molecules 2018; 23(4): E727.

Copyright (c) 2019 PJSC Human Stem Cells Institute



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies