IMPACT OF CANONICAL P-CATENIN/WNT SIGNALING IN NORMAL AND IMPAIRED BY ENDOCRINE DISRUPTOR DICHLORDIPHENYLTRICHLOROETHANE POSTNATAL DEVELOPMENT OF THE ADRENAL MEDULLA



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Exposure of developing organism to endocrine disrupting chemicals is an emerging scientific problem of wide concern. Dichlorodiphenyltrichloroethane (DDT) is considered to be one of the most wide-spread endocrine disruptors. Exposure of humans to low doses of DDT occurs around the globe. The present study was undertaken to elucidate the role of canonical Wnt-signaling in postnatal morphogenesis of the adrenal medulla in intact and developmentally exposed to DDT rats. The research was performed on male Wistar rats in pubertal (42nd day) and postpubertal (70th day) periods which were exposed to dDt during both prenatal and postnatal and only postnatal development. Adrenal histology showed enlargement of the adrenal medulla due to equal development of chromaffine cells and blood vessels from 42nd to 70th day in the intact rats and slower development of the adrenal medulla in the prenatally and postnatally exposed rats. Age-dependent changes in activation of canonical Wnt-signaling in the intact rats and altered Wnt-signaling along with impaired postnatal morphogenesis of the adrenal medulla in the DDT-exposed rats were found. The data obtained shows that prenatal exposure to DDT unlike postnatal exposure causes more profound decrease in activation of canonical Wnt-signaling in adrenal chromaffine cells and impairs development of adrenal medulla parenchyma.

Full Text

Restricted Access

About the authors

D. A Tsomartova

Institute of Human Morphology

N. V Yaglova

Institute of Human Morphology

Email: yaglova@mail.ru

S. V Nazimova

Institute of Human Morphology

S. S Obernikhin

Institute of Human Morphology

V. V Yaglov

Institute of Human Morphology

References

  1. World Health Organization. State of the Science of Endocrine-Disrupting Chemicals. International Programme on Chemical Safety. Geneva; 2012.
  2. Skakkebaek N.E., Toppari J., Soder O. et al. The exposure of fetuses and children to endocrine-disrupting chemicals: a European Society for Paediatric Endocrinology (ESPE) and Pediatric Endocrine Society (PES) call to action statement. J. Clin. Endocrinol. Metab. 2011; 96: 3056-8.
  3. Gore A., Chapell V., Fenton S. et al. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine Disrupting Chemicals. Endocr. Rev. 2015; 36(6): E1-E150.
  4. Eskenazi B., Chevrier J., Rosas L.G. et al. The Pine River statement: human health consequences of DDT use. Environ. Health Perspect. 2009; 117: 1359-67.
  5. World Health Organization. The use of DDT in malaria vector control. Geneva; 2011.
  6. Bachman M.J., Keller J.M., West K.L. et al. Persistent organic pollutant concentrations in blubber of 16 species of cetaceans stranded in the Pacific Islands from 1997 through 2011. Sci. Total Environ. 2014; 9: 115-23.
  7. Jaga K., Dharmani S. Global surveillance of DDT and DDE levels in human tissues. IJOMECH 2003; 16(1): 7-20.
  8. Longnecker M.P. Invited Commentary: Why DDT matters now. Am. J. Epidemiol. 2005; 162: 726-8.
  9. Международная организация труда и ВОЗ. ДДТ и его производные. Экологические аспекты. Женева: мвмест. изд. Прогр. ООН по окружающей среде. Пер. с англ.; 1991.
  10. Яглов В.В., Яглова Н.В. Морфологические и функциональные изменения щитовидной железы крыс при длительном воздействии низких доз эндокринного дисраптора дихлордифенилтрихлорэтана. Современные технологии в медицине 2014; 6(4): 55-61
  11. Яглова Н.В., Цомартова Д.А., Обернихин С.С. и др. Морфофункциональные изменения коркового вещества надпочечников крыс пубертатного возраста, потреблявших низкие дозы эндокринного дисраптора дихлордифенилтрихлорэтана с первого дня постнатального онтогенеза. Вопросы питания 2017; 86(4): 70-6
  12. Ehrhart-Bornstein M., Hinson J.P., Bornstein S.R. et al. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr. Rev. 1998; 19: 101-43.
  13. Val P., Swain A. Gene dosage effects and transcriptional regulation of early mammalian adrenal cortex development. Mol. Cell. Endocrinol. 2010; 323(1): 105-14.
  14. Becker J., Wilting Y. WNT signaling, the development of the sympathoadrenal-paraganglionic system and neuroblastoma. Cell. Mol. Life Sci. 2018; 75: 1057-70.
  15. Stuhlmiller T.J., Garcia-Castro M.I. Current perspectives of the signaling pathways directing neural crest induction. Cell. Mol. Life Sci. 2012; 69(22): 3715-37.
  16. Harris M.L., Erickson C.A. Lineage specification in neural crest cell pathfinding. Dev. Dyn. 2007; 236(1): 1-19.
  17. Wakamatsu Y., Maynard T.M., Weston J.A. Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Dev. 2000; 127(13): 2811-21.
  18. Brault V., Moore R., Kutsch S. et al. Inactivation of the p-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Dev. 2001; 128: 1253-64.
  19. Hari L., Brault V., Kleber M. et al. Lineage-specific requirements of p-catenin in neural crest development. J. Cell Biol. 2002; 159: 867-80.
  20. Lee H.Y., Kleber M., Hari L. et al. Instructive role of Wnt/p-catenin in sensory fate specification in neural crest stem cells. Science 2004; 303: 1020-3.
  21. Vandenberg L.N., Colborn T., Hayes T.B. et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012; 33: 378-455.
  22. Технический регламент Таможенного союза ТР ТС 021/2011 «О безопасности пищевой продукции»; 2011.
  23. Yamazaki H., Takano R., Shimizu M. et al. Human blood concentrations of dichlorodiphenyltrichloroethane (DDT) extrapolated from metabolism in rats and humans and physiologically based pharmacokinetic modeling. J. Health Sci. 2010; 56(5): 566-75.
  24. Pignatelli D., Xiao F., Gouvtia A. et al. Adrenarche in the rat. J. Endocrinol. 2006; 191(1): 301-8.
  25. Berthon A., Martinez A., Bertherat J. et al. Wnt/b-catenin signalling in adrenal physiology and tumour development. Mol. Cell. Endocrinol. 2012; 351: 87-95.
  26. Kim W., Kim M., Jho E.H. Wnt/ p-catenin signaling: from membrane to nucleus. Biochem. J. 2013; 450: 9-21.
  27. Chan W., Anderson C., Gonsalvez D. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res. 2018; 372(2): 171-93.
  28. Кемоклидзе К.Г. Постнатальный рост мозгового вещества надпочечника крысы. Морфология 1998; 113(3): 57. (Kemoklidze K.G. Postnatal development of rat adrenal medulla. Morphology 1998; 113(3): 57.)
  29. Baum B., Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J. Cell Biol. 2011; 192: 907-17.
  30. Brembeck F., Rosario M., Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of p-catenin. Curr. Opin. Genet. Dev. 2006; 16: 51-9.
  31. Цомартова Д.А., Яглова Н.В., Яглов В.В. Изменения активации канонического p-катенин/Wnt-сигналинга в корковом веществе надпочечников крыс, подвергавшихся воздействию эндокринного дисраптора дихлордифенилтрихлорэтана (ДДТ) в пренатальном и постнатальном периоде онтогенеза. Бюллетень экспериментальной биологии и медицины 2017; 164: 495-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies