The research of the molecular mechanisms of endothelial dysfunction in vitro



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Endothelial dysfunction is universally regarded as one of the key elements in the pathogenesis of most of cardiovascular diseases including ischemic heart disease, atherosclerosis, arterial hypertension, myocardial infarction, stroke, dilated cardiomyopathy, as well as diabetes mellitus, inflammatory, oncological, and autoimmune diseases. Localization of endothelial cells in tunica intima of the vessels limits in vivo analysis of the intracellular proteins and other molecules, which regulate cellular functional activity. A possible solution to this problem may be setting experimental conditions for physiological and pathological functioning of endothelial cells. In vitro modeling of endothelial dysfunction may be a useful tool for the development of methods to improve the endothelial function and evaluate the effects of medicinal products. The objective of this literature review is to summarize main trends in studying endothelial dysfunction in vitro using different endothelial cell cultures.

Full Text

Restricted Access

About the authors

R. E Kalinin

I.P. Pavlov Ryazan State Medical University

I. A Suchkov

I.P. Pavlov Ryazan State Medical University

N. V Korotkova

I.P. Pavlov Ryazan State Medical University

N. D Mzhavanadze

I.P. Pavlov Ryazan State Medical University

References

  1. Хлопин Н.Г. Общебиологические и экспериментальные основы гистологии. Издательство Академии наук СССР, Ленинград, 1946: 491.
  2. Furchogott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373-6.
  3. Сторожаков Г.И., Федотова Н.М., Верещагина Г.С. и др. Эндотелиальная дисфункция при артериальной гипертензии. Лечебное дело 2005; 4: 58-64.
  4. Лупинская З.А., Зарифьян А., Гурович Т.Ц. и др. Эндотелий: функция и дисфункция. Б.: КРСУ, 2008: 373.
  5. Марков Х.М. Молекулярные механизмы дисфункции сосудистого эндотелия. Кардиология 2005; 12: 62-72.
  6. Шляхто Е.В., Беркович О.А., Беляева Л.Б. и др. Современные представления о дисфункции эндотелия и методах ее коррекции при атеросклерозе. Международный неврологический журнал 2002; 3: 9-13.
  7. Inagami T., Naruse M., Hoover R. Endothelium as an endocrine organ. Ann. Rev. Physiol. 1995; 57: 171-89.
  8. Малая Л.Т., Корж А.Н., Балковая Л.Б. Эндотелиальная дисфункция при патологии сердечно-сосудистой системы. Харьков: Форсинг, 2000: 432.
  9. Беловол А.Н., Князькова И.И. Функции эндотелия: фокус на оксид азота. Здоровье Украины 2011; 5-6: 50-51.
  10. Tuttolomondo A., Raimondo D. Di, Pecoraro R. et al. Atherosclerosis as an inflammatory disease. Curr. Pharm. Des. 2012; 18(28): 4266-88.
  11. Мартынов А.И., Аветяк Н.Г., Акатова Е.В. и др. Эндотелиальная дисфункция и методы её определения. Рос. кардиол. журнал 2005; 4(54): 94-8.
  12. Furchgott R.F., Vanhoutte P.M. Endothelium-derived relaxing and contracting factors. FASEB J. 1989; 3: 2007-18.
  13. Дунаевская С.С., Винник Ю.С. Развитие эндотелиальной дисфункции при облитерирующем атеросклерозе сосудов нижних конечностей и маркеры прогнозирования течения заболевания. Бюллетень сибирской медицины 2017; 16(1): 108-18.
  14. Сучков И.А., Пшенников А.С., Г ерасимов А.А. и др. Профилактика рестеноза в реконструктивной хирургии магистральных артерий. Наука молодых - Eruditio Juvenium 2013; 2: 12-9.
  15. Nakayama M., Yamamuro M., Takashio S. et al, Late gadolinium enhancement on cardiac magnetic resonance imaging is associated with coronary endothelial dysfunction in patients with dilated cardiomyopathy. Heart Vessels 2017; 33(4): 393-402.
  16. Брюшков А.И., Ершов П.В., Сергеева Н.А. и др. О возможной роли эндотелиальной дисфункции в развитии острого венозного тромбоза. Ангиология и сосудистая хирургия 2016; 22(1): 91-6.
  17. Castro-Ferreira R., Cardoso R., Leite-Moreira A. et al. The Role of Endothelial Dysfunction and Inflammation in Chronic Venous Disease. Ann. Vasc. Surg. 2018; 46: 380-93.
  18. Frump A., Prewitt A., de Caestecker M. EXPRESS: BMPR2 mutations and endothelial dysfunction in pulmonary arterial hypertension. Pulm. Circ. 2018; 1: 2045894018765840.
  19. Chong A.-Y., Blann A.D., Lip G.Y.H. Assessment of endothelial damage and dysfunction: observations in relation to heart failure. Q.J. Med. 2003; 96: 253-67.
  20. Peng H.Y., Li H.P., Li M.Q. High glucose induces dysfunction of human umbilical vein endothelial cells by upregulating miR-137 in gestational diabetes mellitus. Microvasc. Res. 2018; 118: 90-100.
  21. Покровский М.В., Кочкаров В.И., Покровская Т.Г. и др. Методические подходы для количественной оценки развития эндотелиальной дисфункции при L-NAME-индуцированной модели дефицита оксида азота в эксперименте. Кубанский научно-медицинский вестник 2006; 10: 72-7.
  22. Маяков А.И., Покровский М.В., Покровская Т.Г. и др. Способ моделирования эндотелиальной дисфункции путем воспроизведения метаболических нарушений. Научные ведомости 2011; 10(105): 196-201.
  23. Калинин Р.Е., Сучков И.А., Пшенников А.С. и др. Варианты экспериментального моделирования венозной эндотелиальной дисфункции: современное состояние проблемы. Российский медико-биологический вестник им. академика И.П. Павлова 2014; 3: 143-7.
  24. Henderson K.K, Turk J.R., Rush J.W.E., Laughlin M.H. Endothelial function in coronary arterioles from pigs with early-stage coronary disease induced by high fat, highcholesterol-diet: effect of exercise. J. Applied Physiol. 2004; 97: 1159-68.
  25. Korff T., Kimmina S., Martiny-Baron G. et al. Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J. 2001;15(2): 447-57.
  26. Darland D.C., Massingham L.J., Smith S.R. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol. 2003; 264(1): 275-88.
  27. Staton C.A., Reed M.W.R., Brown N.J. A critical analysis of current in vitro and in vivo angiogenesis assays. International journal of experimental pathology. 2009; 90(3): 195-221.
  28. Muthukkaruppan V.R., Shinners B.L., Lewis R. et al. The chick embryo aortic arch assay: a new, rapid, quantifiable in vitro method for testing the efficacy of angiogenic and anti-angiogenic factors in a three-dimensional, serum-free organ culture system. Proc. Am. Assoc. Cancer Res. 2000; 41: 65.
  29. Poulaki V. Angiogenesis assays. Cancer Cell Culture: Methods and Protocols. 2011: 345-58.
  30. Auerbach R., Akhtar N., Lewis R.L. et al. Angiogenesis assays: problems and pitfalls. Cancer and Metastasis Reviews 2000; 19(1-2): 167-72.
  31. Wilasrusmee C., Da Silva M., Singh B. et al. A new in vitro model to study endothelial injury. J. Surg. Res. 2002; 104(2): 131-6.
  32. Jaffe E.A., Nachman R.L., Becker C.G. et al. Culture of human endothelial cells derived from umbilical veins, identification by morphologic and immunologic criteria. J. Clin. Invest. 1973; 52: 2745-56.
  33. Benndorf R., Boger R.H., Ergun S. et al. Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ. Res. 2003; 93: 438-47.
  34. Ma X., Wehland M., Schulz H. et al. Genomic approach o identify factors that drive the formation of three-dimensional structures by EA.hy926e endothelial cells. PLOS One 2013; 8(5): e64402.
  35. Boui's D., Hospers G.A., Meijer C. et al. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 2001; 4(2): 91-102.
  36. Salahuddin S.Z., Nakamura S., Biberfeld P. et al. Angiogenic properties of Kaposi’s sarcoma-derived cells after long-term culture in vitro. Science 1988; 242: 430-3.
  37. Muruganandam A., Herx L.M., Monette R. et al. Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier. FASEB J. 1997; 11(13): 1187-97.
  38. Ливанова А.А., Деев Р.В., Ризванов А.А. Современные методы исследования ангиогенеза в экcперименте. Гены и клетки, 2015; X(1): 1-13
  39. Евдокименко А.Н., Гулевская Т.С., Танашян М.М. Иммуногисто-химические и ультраструктурные признаки нарушения атромбогенных свойств эндотелия при атеросклерозе каротидного синуса. Клиническая неврология 2016; 10(4): 32-8.
  40. Endothelial cell markers. www.abcam.com/primary-antibodies/ endothelial-cell-markers.
  41. http://docplayer.ru/33169253-Glava-3-immunogistohimiya-opuholey-myagkih-tkaney.html
  42. Shutter J.R., Scully S., Fan W. et al. L. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 2000; 14: 1313-8.
  43. Reca R., Cramer D., Yan J. et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 2007; 25(12): 3093-100.
  44. Friedrich E.B., Walenta K., Scharlau J. et al. CD34-/CD133+/ VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregen-erative capacities. Circ. Res. 2006; 98(3): e20.
  45. Zhang L.J., Liu W.X., Chen Y.D. et al. Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome. Chin. Med. J. (Engl.). 2010; 123(19): 2655-61.
  46. Awad O., Dedkov E.I., Jiao C. et al. Differential healing activities of CD34+ and CD14+ endothelial cell progenitors. Arterioscler. Thromb. Vasc. Biol. 2006; 26(4): 758-64.
  47. Devries C., Escobedo J.A., Ueno H. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989-91.
  48. Speirs V., Atkin S.L. Production of VEGF and expression of the VEGF receptors Flt-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumours. Br. J. Cancer 1999; 80(5-6): 898-903.
  49. Welch G., Loscalzo J. Nitric oxide and cardiovascular system. J. Cardiovasc. Surg. 1994; 9: 361-71.
  50. Jeremy J.Y., Rowe D., Emsley A.M. et al. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc. Res. 1999; 43: 580-94.
  51. Magnifico M.C., Oberkersch R.E., Mollo A. et al. VLDL Induced Modulation of Nitric Oxide Signalling and Cell Redox Homeostasis in HUVEC. Oxid Med. Cell Longev. 2017; 2017: 2697364.
  52. Lee H.Y., Zeeshan H.M.A., Kim H.R. et al. Nox4 regulates the eNOS uncoupling process in aging endothelial cells. Free Radic. Biol. Med. 2017; 113: 26-35.
  53. Singh N., Motika G., Eswarappa S.M. et al. Manganese-based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase. Chemistry 2018; 24(33): 8393-8403.
  54. Zeng Y., Liu J. Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes. Exp. Cell Res. 2016; 348(2): 184-9.
  55. Moriguchi T., Sumpio B.E. PECAM-1 phosphorylation and tissue factor expression in HUVECs exposed to uniform and disturbed pulsatile flow and chemical stimuli. J. Vasc. Surg. 2015; 61(2): 481-8.
  56. Ku S.K., Bae J.S. Concentration dependent anti-inflammatory effects thrombin on polyphosphate-mediated inflammatory responses in vitro and in vivo. Inflamm. Res. 2013; 62(6): 609-16.
  57. Wang B., Pearson T., Manning G. et al. In vitro study of thrombin on tubule formation and regulators of angiogenesis. Clin. Appl. Thromb. Hemost. 2010; 16(6): 674-8.
  58. Banfi C., Brioschi M., Barcella S. et al. Oxidized proteins in plasma of patients with heart failure: Role in endothelial damage. Europ. J. Heart Failure 2008; 10: 244-51.
  59. Асейчев А.В., Азизова О.А., Щегловитова О.Н. и др. Влияние окисленного фибриногена на апоптоз эндотелиальных клеток. Биомедицинская химия 2011; 57(2): 210-8.
  60. Cirillo P., Conte S., Cimmino G. et al. Nobiletin inhibits oxidized-LDL mediated expression of Tissue Factor in human endothelial cells through inhibition of Nf-kB. Biochem. Pharmacol. 2017; 128: 26-33.
  61. Amsellem V., Dryden N.H., Martinelli R. et al. ICAM-2 regulates vascular permeability and N-cadherin localization through ezrin-radixin-moesin (ERM) proteins and Rac-1 signalling. Cell Commun. Signal. 2014; 12: doi: 10.1186/1478-811X-12-12.
  62. Profumo E., Buttari B., D'Arcangelo D. et al. The Nutraceutical Dehydrozingerone and Its Dimer Counteract Inflammation and Oxidative Stress-Induced Dysfunction of In Vitro Cultured Human Endothelial Cells: A Novel Perspective for the Prevention and Therapy of Atherosclerosis. Oxid Med. Cell Longev. 2016; 2016: 1246485.
  63. Clemens N., Frauenknecht K., Katzav A. et al. In vitro effects of antiphospholipid syndrome-IgG fractions and human monoclonal antiphospholipid IgG antibody on human umbilical vein endothelial cells and monocytes. Acad. Sci. 2009; 1173: 805-13.
  64. Tian H., Liu Q., Qin S. et al. Synthesis and cardiovascular protective effects of quercetin 7-O-sialic acid. J. Cell. Mol. Med. 2017; 21(1): 107-20.
  65. Soltani B., Bodaghabadi N., Mahpour G. et al. Nanoformulation of curcumin protects HUVEC endothelial cells against ionizing radiation and suppresses their adhesion to monocytes: potential in prevention of radiation-induced atherosclerosis. Biotech. Let. 2016; 38(12): 2081-8.
  66. Garcia-Heredia A., Marsillach J., Rull A. et al. Paraoxonase-1 inhibits oxidized low-density lipoprotein-induced metabolic alterations and apoptosis in endothelial cells: a nondirected metabolomic study. Camps J. Mediators Inflamm. 2013; 2013: 156053.
  67. Li R., Zhang Y., Yan H. et al. CYP2J2 participates in atherogenesis by mediating cell proliferation, migration and foam cell formation. Mol. Med. Rep. 2017; 15(2): 643-8.
  68. Wiedemanna E., Jellinghausa S., Endea G. et al. Regulation of endothelial migration and proliferation by ephrin-A1. Cellular Signalling 2017; 29: 84-95.
  69. Zhu L., Jia F., Wei J. et al. Salidroside protects against homocysteine-induced injury in human umbilical vein endothelial cells via the regulation of endoplasmic reticulum stress. Cardiovasc Ther. 2017; 35(1): 33-9.
  70. Lo H.M., Lai T.H., Li C.H. et al. TNF-a induces CXCL1 chemokine expression and release in human vascular endothelial cells in vitro via two distinct signaling pathways. Acta Pharmacol. Sin. 2014; 35(3): 339-50.
  71. Blum A., Ginat-Maimon L., Yehuda H. et al. Inhibition of inflammation may enhance nitric oxide availability in patients undergoing bariatric surgery for weight loss. J. Intern. Med. 2015; 278(4): 401-9.
  72. Инжутова А.И., Филиппова С.А., Ларионов А.А. и др. Механизмы коррекции эндотелиальной дисфункции: данные трансляционной медицины. Сибирский научно-медицинский журнал 2012; 32(5): 38-47.
  73. Krychtiuk K.A., Kaun C., Hohensinner P.J. et al. Anti-thrombotic and pro-fibrinolytic effects of levosimendan in human endothelial cells in vitro. Vascul. Pharmacol. 2017; 90: 44-50.
  74. Monti M., Terzuoli E., Ziche M. et al. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. Pharmacol. Res. 2013; 76: 171-81.
  75. Terzuoli E., Monti M., Vellecco V. et al. Characterization of zofeno-prilat as an inducer of functional angiogenesis through increased H2 S availability. Br. J. Pharmacol. 2015; 172(12): 2961-73.
  76. Monti M., Terzuoli E., Ziche M. et al. H2S dependent and independent anti-inflammatory activity of zofenoprilat in cells of the vascular wall. Pharmacol. Res. 2016; 113(Pt A):426-437.
  77. Vianello F., Sambado L., Goss A. et al. Dabigatran antagonizes growth, cell-cycle progression, migration, and endothelial tube formation induced by thrombin in breast and glioblastoma cell lines. Cancer Med. 2016; 5(10): 2886-98.
  78. Becher T., Schulze T.J., Schmitt M. et al. Ezetimibe inhibits platelet activation and uPAR expression on endothelial cells. Int. J. Cardiol. 2017; 227: 858-62.
  79. Yan W., Li D., Zhou X. Pravastatin attenuates the action of the ETS domain-containing protein ELK1 to prevent atherosclerosis in apolipoprotein E-knockout mice via modulation of extracellular signal-regulated kinase 1/2 signal pathway. Clin. Exp. Pharmacol. Physiol. 2017; 44(3): 344-52.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies