Comparison of the effectiveness of available sources of autologous colony-forming endothelial cells



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Endothelial Colony-forming cells (ECFCs) are valuable material for tissue vascular engineering and cell therapy of ischemic tissues. Difficult isolation is the main problem for using of ECFCs. ECFCs isolation from peripheral blood and adipose tissue has been previously described. In the presented research we compared effectiveness of peripheral blood, subcutaneous and epicardial adipose tissue for the ECFCs isolation without cell sorting. ECFCs was isolated from peripheral blood, subcutaneous and epicardial adipose tissue obtained from coronary heart disease patients (males, n=8) undergoing elective coronary artery bypass surgery. The stromal-vascular fraction of subcutaneous (SVF-ST) and epicardial (SVF-ET) adipose tissue as well as the mononuclear blood fraction (MNF) were cultivated in the complied EGM-2 medium. Cell cultures phenotyping was performed by flow cytometry and confocal microscopy. Their angiogenic (Matrigel) and proliferative activity (xCELLigence analyzer) in vitro were studied. ECFCs were isolated from MNF in 50% of cases, from SVF-ST in 12.5% and SVF-ET in 37.5%. The proliferative activity of ECFCs isolated from adipose tissue was low while cultures from MNF showed high and medium activity in 75% of cases. Pure ECFCs (more 99%) were obtained from MNF to third passage without cell sorting. Cultures from adipose tissue were contaminated by mesenchymal-stromal cells (MSCs) and contained ECFCs and MSCs. Thus, peripheral blood is the most effective source of autologous ECFCs compared with adipose tissue for this isolation method. However, adipose tissue is a suitable source of MSC and mixed cultures of MSC and endothelial cells.

Full Text

Restricted Access

About the authors

V. G Matveeva

Research Institute for Complex issue of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Kemerovo, Russia

L. V Antonova

Research Institute for Complex issue of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Kemerovo, Russia

EA. A Velikanova

Research Institute for Complex issue of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Kemerovo, Russia

E. S Sardin

Research Institute for Complex issue of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Kemerovo, Russia

O. L Barbarash

Research Institute for Complex issue of Cardiovascular Diseases

Email: matveeva_vg@mail.ru
Kemerovo, Russia

References

  1. Yoder M.C., Mead L.E., Prater D. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109(5): 1801-9.
  2. Reinisch A., Hofmann N.A., Obenauf A.C. et al. Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood 2009; 113(26): 6716-25.
  3. Chong M.S., Ng W.K., Chan J.K. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Transl. Med. 2016; 5(4): 530-8.
  4. Flex A., Biscetti F., lachininoto M.G. et al. Human cord blood endothelial progenitors promote post-ischemic angiogenesis in immunocompetent mouse model. Thromb. Res. 2016; 141: 106-11.
  5. Yu P., Li Q., Liu Y. et al. Pro-angiogenic efficacy of transplanting endothelial progenitor cells for treating hindlimb ischemia in hyperglycemic rabbits. J. Diabetes Complications 2015; 29: 13-9.
  6. Bai Y.Y., Wang L., Peng X.G. et al. Non-invasive monitoring of transplanted endothelial progenitor cells in diabetic ischemic stroke models. Biomaterials 2015; 40: 43-50.
  7. Li Y.F., Ren L.N., Guo G. et al. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J. Hematol. Oncol. 2015; 8: 33.
  8. Tam J.C., Ko C.H., Lau K.M. et al. Enumeration and functional investigation of endothelial progenitor cells in neovascularization of diabetic foot ulcer rats with a Chinese 2-herb formula. J. Diabetes 2015; 7: 718-28.
  9. Mehmood A., Ali M., Khan S.N. et al. Diazoxide preconditioning of endothelial progenitor cells improves their ability to repair the infarcted myocardium. Cell Biol. Int. 2015; 39: 1251-63.
  10. Sheng Z.L., Yao Y.Y., Li Y.F. et al. Transplantation of bradykinin-preconditioned human endothelial progenitor cells improves cardiac function via enhanced Akt/eNOS phosphorylation and angiogenesis. Am. J. Transl. Res. 2015; 7: 1214-26.
  11. Ingram D.A., Mead L.E., Tanaka H. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004; 104(9): 2752-60.
  12. Moon S.H., Kim S.M., Park S.J. et al. Development of a xeno-free autologous culture system for endothelial progenitor cells derived from human umbilical cord blood. PLoS One 2013; 8: e75224.
  13. Lin R.Z., Dreyzin A., Aamodt K. et al. Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant. 2011; 20: 515-22.
  14. Matveeva V., Khanova M., Sardin E. et al. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int. J. Mol. Sci. 2018; 19(11): pii: E3453.
  15. Pham P.V., Vu N.B., Nguyen H.T. et al. Isolation of endothelial progenitor cells from human adipose tissue. Biomed. Res. Ther. 2016; 3(5): 645-52.
  16. Francis M.P., Sachs P.C., Elmore L.W. et al. Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 2010; 6: 11-4.
  17. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-7.
  18. Martinez-Estrada O.M., Muñoz-Santos Y., Julve J. et al. Human adipose tissue as a source of Flk-1 + cells: new method of differentiation and expansion. Cardiovasc. Res. 2005; 65(2): 328-33.
  19. Planat-Benard V., Silvestre J.S., Cousin B. et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004; 109: 656-63.
  20. Miranville A., Heeschen C., Sengenes C. et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 2004; 110: 349-55.
  21. Kondo K., Shintani S., Shibata R. et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2009; 29: 61-6.
  22. Yim J., Rabkin S.W. Differences in Gene Expression and Gene Associations in Epicardial Fat Compared to Subcutaneous Fat. Horm. Metab. Res. 2017; 49(5): 327-37.
  23. Pham P., Vu N., Nguyen H. et al. Isolation of endothelial progenitor cells from human adipose tissue. Biomedical Research and Therapy 2016; 3(05): 645-52.
  24. Zhou L., Xia J., Qiu X. et al. In vitro evaluation of endothelial progenitor cells from adipose tissue as potential angiogenic cell sources for bladder angiogenesis. PLoS One 2015; 10(2): e0117644.
  25. Ramakrishnan V.M., Boyd N.L. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. Tissue Eng. Part B Rev. 2018; 24(4): 289-99.
  26. Sidney L.E., Branch M.J., Dunphy S.E. et al. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 2014; 32(6): 1380-9.
  27. Kolbe M., Dohle E., Katerla D. et al. Enrichment of outgrowth endothelial cells in high and low colony-forming cultures from peripheral blood progenitors. Tissue Eng. Part C Methods 2010; 16(5): 877-86.
  28. Tura O., Skinner E.M., Barclay G.R. et al. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 2013; 31(2): 338-48.
  29. Матвеева В.Г., Антонова Л.В., Барбараш О.Л. Эндотелиальные прогениторные клетки: идентификация, свойства и возможности использования. Современное состояние проблемы. Цитология 2018; 60(4): 241-51.
  30. Smadja D.M., Melero-Martin J.M., Eikenboom J. et al. Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: Position paper from the International Society on Thrombosis and Haemostasis SSC. J. Thromb. Haemost. 2019; 17(7): 1190-4.
  31. Haynes B.A., Huyck R.W., James A.J. et al. Isolation, Expansion, and Adipogenic Induction of CD34+CD31+ Endothelial Cells from Human Omental and Subcutaneous Adipose Tissue. J. Vis. Exp. 2008; 137: e57804.
  32. Arts C.H., Heijnen-Snyder G.J., Joosten P.P. et al. A novel method for isolating pure microvascular endothelial cells from subcutaneous fat tissue ideal for direct cell seeding. Lab. Invest. 2001; 81(10): 1461-5.
  33. Heydarkhan-Hagvall S., Schenke-Layland K., Yang J.Q. et al. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 2008; 187(4): 263-74.
  34. El-Edela R.H., Metwally H.G., Khodeer S.A. et al. Differentiation of mesenchymal stem cells into vascular endothelial cells: the future revascularization therapy in ischemic tissue. Menoufia Med. J. 2017; 30: 147-50.
  35. Fischer L.J., McIlhenny S., Tulenko T. et al. Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J. Surg. Res. 2009; 152(1): 157-66.
  36. Cao Y., Sun Z., Liao L. et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem. Biophys. Res. Commun. 2005; 332(2): 370-9.
  37. Monsuur H.N., Weijers E.M., Niessen F.B. et al. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS One 2016; 11(11): e0167056.
  38. Zhou L., Xia J., Qiu X. et al. In Vitro Evaluation of Endothelial Progenitor Cells from Adipose Tissue as Potential Angiogenic Cell Sources for Bladder Angiogenesis. PLoS One 2015; 10(2): e0117644.
  39. Kisselbach L., Merges M., Bossie A. et al. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology 2009; 59(1): 31-44.
  40. Lv F.J., Tuan R.S., Cheung K.M. et al. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2014; 32(6): 1408-19

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies