Association of TNF, MMP9, CYBA polymorphism with subclinical arterial wall changes and cardiovascular diseases risk factors



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Chronic inflammation and oxidative stress play key role in arterial wall changes and cardiovascular diseases. There is limited evidence on influence of genotypes, which are correlated with dironic inflammation and oxidative stress at arterial wall changes (pulse wave velocity, carotid artery intima-media thickness, endothelium-dependent vasodilation, presence of atherosclerotic plaques) and risk factors of cardiovascular diseases. We examined association of TNF-238G>A polymorphism, MMP9 -1562C>T polymorphism, CYBA c.214Т>С polymorphism with arterial wall changes and risk factors of cardiovascular diseases in 160 healthy people of different ages. GG genotype of TNF -238G>A polymorphism was associated with lower levels of aldosterone (p=0,021), higher levels of glycated haemoglobin (p=0,02) and insulin-like growth factor (p=0,032). СТ genotype of MMP9 -1562C>T polymorphism was associated with most commonly found obesity (p=0,05). CC and TC genotypes of CYBA c.214Т>С polymorphism were associated with shorter leucocyte telomere length (p=0,011). There wasn't found any association of TNF, MMP9, CYBA polymorphism with arterial wall changes. Association was found between TNF -238G>A polymorphism and MMP9 -1562C>T polymorphism with metabolic parameters, CYBA c.214Т>С polymorphism with leucocyte telomere length.

Full Text

Restricted Access

About the authors

A. A Akopyan

Medical Scientific and Educational Center of M.V. Lomonosov Moscow State University; Russian Clinical and Research Center of Gerontology N.I. Pirogov Russian National Research Medical University

Email: a.alexandrova18@gmail.com
Moscow, Russia

K. I Kirillova

Medical Scientific and Educational Center of M.V. Lomonosov Moscow State University

Email: a.alexandrova18@gmail.com
Moscow, Russia

I. D Strazhesko

Russian Clinical and Research Center of Gerontology N.I. Pirogov Russian National Research Medical University; Russian Clinical and Research Center of Gerontology N.I. Pirogov Russian National Research Medical University

Email: a.alexandrova18@gmail.com
Moscow, Russia

L. M Samokhodskaya

Medical Scientific and Educational Center of M.V. Lomonosov Moscow State University

Email: a.alexandrova18@gmail.com
Moscow, Russia

S. L Leonov

I.I. Polzunov Altai State Technical University

Email: a.alexandrova18@gmail.com
Barnaul, Russia

E. M Gelfand

I.I. Polzunov Altai State Technical University

Email: a.alexandrova18@gmail.com
Barnaul, Russia

A. G Sorokina

Medical Scientific and Educational Center of M.V. Lomonosov Moscow State University

Email: a.alexandrova18@gmail.com
Moscow, Russia

I. A Orlova

Medical Scientific and Educational Center of M.V. Lomonosov Moscow State University

Email: a.alexandrova18@gmail.com
Moscow, Russia

References

  1. Cardiovascular diseases, (n. d.), https://www.who.int/westernpacific/health-topics/cardiovascular-diseases.
  2. Стражеско И.Д., Акашева Д.У., Дудинская Е.Н. и др. Старение сосудов: основные признаки и механизмы. Кардиоваскулярная терапия и профилактика 2012; 11(4): 93-100.
  3. Harvey A., Montezano A.C., Touyz R.M. Vascular biology of ageing - Implications in hypertension. J. Mol. Cell. Cardiol. 2015; 83: 112-21.
  4. Strazhesko I.D., Tkacheva O.N., Akasheva D.U. et al. Growth hormone, insulin-like growth factor-1, insulin resistance, and leukocyte telomere length as determinants of arterial aging in subjects free of cardiovascular diseases. Front. Genet. 2017; 15(8): 198.
  5. Sirbu A., Nicolae H., Martin S. et al. IGF-1 and insulin resistance are major determinants of common carotid artery thickness in morbidly obese young patients. Angiology 2016; 67(3): 259-65.
  6. McDonnell B.J., Yasmin, Butcher L. et al. The age-dependent association between aortic pulse wave velocity and telomere length. J. Physiol. 2017; 595(5): 1627-35.
  7. Pulido-Gomez K., Hernadez-Diaz Y., Tovilla-Zarate C.A. et al. Association of G308A and G238A Polymorphisms of the TNF-α Gene with Risk of Coronary Heart Disease: Systematic Review and Meta-analysis. Arch. Med. Res. 2016; 47(7): 557-72.
  8. Morgan A.R., Zhang B., Tapper W. et al. Haplotypic analysis of the MMP-9 gene in relation to coronary artery disease. J. Mol. Med. (Berl.) 2003; 81(5): 321-6.
  9. Xu Q., Yuan F., Shen X. et al. Polymorphisms of C242T and A640G in CYBA gene and the risk of coronary artery disease: a meta-analysis. PLos One 2014; 9(1): e84251.
  10. Kumar P., Misra S., Kumar A. et al. Association between tumor necrosis factor-а (-238G/A and -308G/A) gene polymorphisms and risk of ischemic stroke: a meta-analysis. Pulse (Basel) 2015; 3: 217-28.
  11. Buraczynska K., Kurzepa J., Ksiazek A. et al. Matrix metalloproteinase-9 (MMP-9) gene polymorphism in stroke patients. Neuromolecular Med. 2015; 17: 385-90.
  12. Yang W., Lu J., Yang L. et al. Association of matrix metalloproteinase-9 gene -1562C/T polymorphism with essential hypertension: a systematic review and meta-analysis article. Iran J. Public Health 2015; 44(11): 1445-52.
  13. Cawthon R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002; 30(10): e47.
  14. Kamata H., Honda S.I., Maeda S. et al. Reactive oxygen species promote TNF alpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120(5): 649-61.
  15. Vlachopoulos C., Gravos A., Georgiopoulos G. et al. The effect of TNF-a antagonists on aortic stiffness and wave reflections: a metaanalysis. Clin. Rheumatol. 2018; 37(2): 515-26.
  16. Tao Y., Xiong Y., Wang H. et al. APOC3 induces endothelial dysfunction through TNF-а and JAM-1. Lipids in Health and Disease 2016; 15(1): 153.
  17. Huang M.J., Wei R.B., Zhao J. et al. Albuminuria and endothelial dysfunction in patients with non-diabetic chronic kidney disease. Med. Sci. Monit. 2017; 23: 4447-53.
  18. Liu S., Hempe J.M., McCarter R.J. et al. Association between inflammation and biological variation in hemoglobin A1c in U.S. Nondiabetic Adults. J. Clin. Endocrinol. Metab. 2015; 100(6): 2364-71.
  19. Cheng Y., An B., Jiang M. et al. Association of tumor necrosis factoralpha polymorphisms and risk of coronary artery disease in patients with non-alcoholic fatty liver disease. Hepat. Mon. 2015; 15(3): e26818.
  20. Wu J., Zhang X., Wang J. et al. Gene polymorphisms and circulating levels of the TNF-alpha are associated with ischemic stroke: a meta-analysis based on 19,873 individuals. International Immunopharmacology 2019; 75: 105827.
  21. Hou L., Huang J., Lu X. et al. Polymorphisms of tumor necrosis factor alpha gene and coronary heart disease in a Chinese Han population: Interaction with cigarette smoking. Thrombosis Research 2009; 123(6): 822-6.
  22. Yabluchanskiy A., Ma Y., Iyer R.P. et al. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology (Bethesda) 2013; 28(6): 391-403.
  23. Mehde A.A., Mehdi W.A., Yusof F. et al. Association of MMP-9 gene polymorphisms with nephrolithiasis patients. J Clin. Lab. Analys. 2018; 32(1): e22173.
  24. Manna P., Jain S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015; 13(10): 423-44.
  25. Meschiari C.A., Ero O.K., Pan H. et al. The impact of aging on cardiac extracellular matrix. GeroScience 2017; 39(1): 7-18.
  26. Luizon M.R., Belo V.A., Fernandes K.S. et al. Plasma matrix metalloproteinase-9 levels, MMP-9 gene haplotypes, and cardiovascular risk in obese subjects. Mol. Biol. Rep. 2016; 43(6): 463-71.
  27. Rodriguez-Pérez J.M., Vargas-Alarcôn G., Posadas-Sanchez R. et al. rs3918242 MMP9 gene polymorphism is associated with myocardial infarction in Mexican patients. Genet. Mol. Res. 2016; 15(1): 15017776.
  28. Zhang M.M., Chang X.W., Hao X.Q. et al. Association between matrix metalloproteinase 9 C-1562T polymorphism and the risk of coronary artery disease: an update systematic review and meta-analysis. Oncotarget 2018; 9(10): 9468-79.
  29. Стражеско И.Д., Ткачева О.Н., Акашева Д.У. и др. Взаимосвязь компонентов метаболического синдрома с параметрами клеточного и сосудистого старения. Российский кардиологический журнал 2014; 6: 30-4.
  30. Tian R., Zhang L.N., Zhang T.T. et al. Association between oxidative stress and peripheral leukocyte telomere length in patients with premature coronary artery disease. Med. Sci. Monit. 2017; 23: 4382-90.
  31. Fyhrquist F., Saijonmaa O., Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat. Rev. Cardiol. 2013; 10(5): 274-83.
  32. Papapetrou A., Moris D., Patelis N. et al. Oxidative stress and total antioxidant status during internal carotid artery clamping with or without shunting: An experimental pilot study. Med. Sci. Monit. Basic Res. 2014; 21: 200-5.
  33. Ji Y., Ge J., Zhu Z. et al. Relationship between C242T polymorphism and arterial stiffness in an apparently healthy population. J. Hum. Hypertens. 2016; 30(8): 488-92.
  34. Cheng H.M., Park S., Huang Q. et al. Characteristics on the Management of Hypertension in Asia - Morning Hypertension Discussion Group (COME Asia MHDG), Vascular aging and hypertension: Implications for the clinical application of central blood pressure. Int. J. Cardiol. 2017; 230: 209-13.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies