Cytotoxic and genotoxic effects of mitomycin C toward human endothelial cells



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Mitomycin C is the most used for in vitro mutagenesis modeling alkylating agent belonging to the single-site mutagens. In the presented study, the in vitro cytotoxic and genotoxic effects of mitomycin C in endothelial cells of different arteries differ in the level of atherogenesis were studied. MTT colorimetric assay was used for assessment of cytotoxicity of different concentrations of mitomycin C, cytokinesis-block micronucleus assay - for estimating of genotoxic effects in human coronary and internal thoracic artery endothelial cells exposed to mutagen. After 6-h cultivation no decrease in the viability of cell cultures exposed to all studied concentrations of mitomycin C was observed; an increasing time of mutagenic load to 24 hours resulted in a significant (p<0,05) decrease in the number of viable human coronary- and internal thoracic artery endothelial cells at concentrations of mitomycin C above 350 ng/mL and 200 ng/mL, respectively. Exposed cultures are characterized by three-fold increasing of cytogenetic damages (micronucleus, nucleoplasmic bridges and nuclear buds) compared to control (p<0,01); the cells of internal thoracic artery have a higher level of DNA lesions in comparison to coronary artery. Thus, endothelial cells of different arteries differ in the threshold of sensitivity to cytotoxic exposure of alkylating agents and the manifestation of genotoxic effects of mitomycin C.

Full Text

Restricted Access

About the authors

M. Y Sinitsky

Research Institute for Complex Issues of Cardiovascular Diseases

Email: max-sinitsky@rambler.ru

A. G Kutikhin

Research Institute for Complex Issues of Cardiovascular Diseases

D. K Shishkova

Research Institute for Complex Issues of Cardiovascular Diseases

M. A Asanov

Research Institute for Complex Issues of Cardiovascular Diseases

A. V Ponasenko

Research Institute for Complex Issues of Cardiovascular Diseases

References

  1. Yurttas C., Hoffmann G., Tolios A. et al. Systematic review of variations in hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal metastasis from colorectal cancer. J. Clin. Med. 2018; 7(12): 567.
  2. Бочков Н.П., Чеботарёв А.Н. Наследственность человека и мутагены внешней среды. М.: Медицина; 1989.
  3. Lee Y.J., Park S.J., Ciccone S.L. et al. An in vivo analysis of MMC-induced DNA damage and its repair. Carcinogenesis 2006; 27(3): 446-53.
  4. Rink S.M., Lipman R., Alley S.C. et al. Bending of DNA by the mitomycin C-induced, GpG intrastrand cross-link. Chem. Res. Toxicol. 1996; 9(2): 382-9.
  5. Stone M.P., Cho Y.J., Huang H. et al. Interstrand DNA cross-links induced by alpha, beta-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc. Chem. Res. 2008; 41(7): 793-804.
  6. Caulfield J.L., Wishnok J.S., Tannenbaum S.R. Nitric oxide-induced interstrand cross-links in DNA. Chem. Res. Toxicol. 2003; 16(5): 571-4.
  7. Cadet J., Davies K.J.A., Medeiros M.H. et al. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic. Biol. Med. 2017; 107: 13-34.
  8. Colis L.C., Raychaudhury P., Basu A.K. Mutational specificity of gamma-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase eta. Biochemistry 2008; 47(31): 8070-9.
  9. Aboyans V., Lacroix P., Criqui M.H. Large and small vessels atherosclerosis: similarities and differences. Prog. Cardiovasc. Dis. 2007; 50(2): 112-25.
  10. Sims F.H. A comparison pf coronary and internal mammary arteries and implications of the results in the etiology of atherosclerosis. Am. Heart J. 1983; 105(4): 560-6.
  11. Gray K., Bennett M. Role of DNA damage in atherosclerosis-bystander or participant? Biochem. Pharmacol. 2011; 82: 693-700.
  12. Кутихин А.Г., Синицкий М.Ю., Понасенко А.В. Роль мутагенеза в развитии атеросклероза. Комплексные проблемы сердечно-сосудистых заболеваний 2017; 6(1): 92-101
  13. Borghini A., Cervelli Т., Galli A. et al. DNA modifications in atherosclerosis: from the past to the future. Atherosclerosis 2013; 230(2): 202-9.
  14. Nair J., De Flora S., Izzotti A. et al. Lipid peroxidation-derived etheno-DNA adducts in human atherosclerotic lesions. Mutat. Res. 2007; 621(1-2): 95-105.
  15. Hude W., Kalweit S., Engelhardt G. et al. In vitro micronucleus assay with Chinese hamster V79 cells - results of a collaborative study with in situ exposure to 26 chemical substances. Mutat. Res. 2000; 468(2): 137-63.
  16. Rosefort C., Fauth E., Zankl H. Micronuclei induced by aneugens and clastogens in mononucleate and binucleate cells using the cytokinesis block assay. Mutagenesis 2004; 19(4): 277-84.
  17. Speit G. Does the recommended lymphocyte cytokinesis-block micronucleus assay for human biomonitoring actually detect DNA damage induced by occupational and environmental exposure to genotoxic chemicals? Mutagenesis 2013; 28(4): 375-80.
  18. OECD. Guidelines for the testing of chemicals no. 487: in vitro mammalian cell micronucleus test (Mnvit). OECD: Paris, France; 2010.
  19. Fenech M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007; 2(5): 1084-104.
  20. Scarpato R., Gambacciani C., Svezia B. et al. Cytotoxicity and geno-toxicity studies of two free-radical generators (AAPH and SIN-1) in Human Microvascular Endothelial Cells (HMEC-1) and human peripheral lymphocytes. Mutat. Res. 2011; 722(1): 69-77.
  21. Cheng S.Y., Vargas A., Lee J.Y. et al. Involvement of Akt in mitomycin C and its analog triggered cytotoxicity in MCF-7 and K562 cancer cells. Chem. Biol. Drug. Des. 2018; 92(6): 2022-34.
  22. Al-Otaibi W.A., Alkhatib M.H., Wali A.N. Cytotoxicity and apoptosis enhancement in breast and cervical cancer cells upon coadministration of mitomycin C and essential oils in nanoemulsion formulations. Biomed. Pharmacother. 2018; 106: 946-55.
  23. Tung S.Y., Lin C.T., Chen C.N. et al. Effect of mitomycin C on X-ray repair cross complementing group 1 expression and consequent cytotoxicity regulation in human gastric cancer cells. J. Cell. Biochem. 2019; 120: 8333-42.
  24. Hoorn C.M., Wagner J.G., Petry T.W. et al. Toxicity of mitomycin C toward cultured pulmonary artery endothelium. Toxicol. Appl. Pharmacol. 1995; 130(1): 87-94.
  25. Wu K.Y., Wang H.Z., Hong S.J. Mechanism of mitomycin-induced apoptosis in cultured corneal endothelial cells. Mol. Vis. 2008; 14: 1705-12.
  26. Matsushima Т., Hayashi M., Matsuoka A. et al. Validation study of the in vitro micronucleus test in a Chinese hamster Lung Cell Line (CHL/ IU). Mutagenesis 1999; 14(6): 569-80.
  27. Speit G., Linsenmeyer R., Schutz P. et al. Insensitivity of the in vitro cytokinesis-block micronucleus assay with human lymphocytes for the detection of DNA damage present at the start of the cell culture. Mutagenesis 2012; 27(6): 743-7.
  28. Raicu M., Vral A., Thierens H. et al. Radiation damage to endothelial cells in vitro, as judged by the micronucleus assay. Mutagenesis 1993; 8(4): 335-9.
  29. Dessy C, Ferron O. Pathophysiological roles of nitric oxide: in the heart and the coronary vasculature. Anti Inflamm. Anti Allergy. Agents Med. Chem. 2004; 3:207-16.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies