Clinical trials for the treatment of hereditary diseases by genome editing

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


New effective and easy-to-use genome editing tools open up the possibility of treating various diseases, including hereditary, oncological and infectious. The review provides information about clinical trials of developing therapies for monogenic diseases using genome editing systems such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). Clinical trials are carried out for six hereditary diseases: mucopolysaccharidosis types I and II, sickle cell anemia, β-thalassemia, hemophilia B, and Leber congenital amaurosis 10. Knowledge about safety and efficacy of genome editing are still limited and the long-term effects of such intervention have to be studied.

Full Text

Restricted Access

About the authors

Y. S Slesarenko

N.P. Bochkov Research Centre for Medical Genetics

Moscow, Russia

A. V Lavrov

N.P. Bochkov Research Centre for Medical Genetics

Moscow, Russia

S. A Smirnikhina

N.P. Bochkov Research Centre for Medical Genetics

Moscow, Russia


  1. Shim G., Kim D., Park G.T. et al. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol. Sin. 2017; 38(6): 738-53.
  2. Anguela X., Sharma R., Doyon Y. et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 2013; 122: 3283-7.
  3. Kim S., Lee M., Kim H. et al. Preassembled zinc-finger arrays for rapid construction of ZFNs. Nat. Methods 2011; 8: 7.
  4. Deng D., Yan. C., Pan X. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012; 335: 720-3.
  5. Christian M., Cermak T., Doyle E. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186: 757-61.
  6. Hsu P., Lander E., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157: 1262-78.
  7. Barrangou R., Fremaux C., Deveau H. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315: 1709-12.
  8. Schacker M., Seimetz D. From fiction to science: clinical potentials and regulatory considerations of gene editing. Clin. Transl. Med. 2019; 8(1): 27.
  9. Зайнитдинова М.И., Смирнихина С.А., Лавров А.В. и др. Генотерапевтические подходы к лечению миодистрофии Дюшенна. Гены и Клетки 2019; 14(4): 6-18.
  10. Коваленко В.Р., Хабарова Е.А., Рзаев Д.А. и др. Клеточные модели, геномные технологии и клиническая практика: синтез знаний для исследования механизмов, диагностики и терапии болезни Паркинсона. Гены и Клетки 2017; 12(2): 11-28.
  11. Beck M., Arn P., Giugliani R. et al. The natural history of MPS I: global perspectives from the MPS I Registry. Genet. Med. 2014; 16(10): 759-65.
  12. Mitrovic S., Gouze H., Gossec L. et al. Mucopolysaccharidoses seen in adults in rheumatology. Joint Bone Spine 2017; 84(6): 663-70.
  13. Khan S.A., Peracha H., Ballhausen D. et al. Epidemiology of mucopolysaccharidoses. Mol. Genet. Metab. 2017; 121(3): 227-40.
  14. Harmatza P., Heather A. Laub, Heldermonc C. et al. A phase 1/2 clinical trial of SB-318 ZFN-mediated in vivo human genome editing for treatment of MPS I (Hurler syndrome). Molecular Genetics and Metabolism 2019; 68.
  15. Muenzera J., Carlos E. Pradab, Burtonc B. et al. A phase 1/2 clinical trial with dose escalation of SB913 ZFN-mediated in vivo human genome editing for treatment of MPS II (Hunter syndrome). Molecular Genetics and Metabolism. 2019; 104.
  16. Peck S., Casal M., Malhotra N. et al. Pathogenesis and treatment of spine disease in the mucopolysaccharidoses. Mol. Genet. Metab. 2016; 118(4): 232-43.
  17. Cimaz R., La Torre F. Mucopolysaccharidoses. Curr. Rheumatol. Rep. 2014; 16: 389.
  18. Fraldi A., Serafini M., Sorrentino N. et al. Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches. Ital. J. Pediatr. 2018; 44(2): 130.
  19. Fecarotta S., Gasperini S., Parenti G. New treatments for the mucopolysaccharidoses: from pathophysiology to therapy. Ital. J. Pediatr. 2018; 44(2): 124.
  20. Cavazzana M., Mavilio F. Gene Therapy for Hemoglobinopathies. Hum. Gene Ther. 2018; 29(10): 1106-13.
  21. Kohne E., Kleihauer E. Hemoglobinopathies: a longitudinal study over four decades. Dtsch. Arztebl. Int. 2010; 107(5): 65-71.
  22. Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch. Arztebl. Int. 2011; 108(31-32): 532-40.
  23. Psatha N., Reik A., Phelps S. et al. Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with ß-Thalassemia Major. Mol. Ther. Methods Clin. Dev. 2018; 10: 313-26.
  24. Sankaran V.G., Menne T.F., Xu J. et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008; 322: 1839-42.
  25. Holmes M.C., Reik A., Rebar E.J. et al. A Potential Therapy for Beta-Thalassemia (ST-400) and Sickle Cell Disease (BIVV003). Blood 2017; 130: 2066.
  26. Vertex Pharmaceuticals Incorporated, CRISPR Therapeutics. A safety and efficacy study evaluating CTX001 in subjects with transfusion-dependent ß-thalassemia. National Institutes of Health; 2019.
  27. Vertex Pharmaceuticals Incorporated, CRISPR Therapeutics. A safety and efficacy study evaluating CTX001 in subjects with severe sickle cell disease. National Institutes of Health; 2019.
  28. Yin H., Xue W., Chen S. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 2014; 32: 551-3.
  29. Khan S., Mahmood M.S., Rahman S. al. CRISPR/Cas9: the Jedi against the dark empire of diseases. J. Biomed. Sci. 2018; 25(1): 29.
  30. Allife Medical Science and Technology Co., Ltd. iHSCs with the gene correction of HBB intervent subjests with ß-thalassemia mutations. National Institutes of Health; 2019.
  31. Blennerhassett R., Favaloro E.J., Pasalic L. Coagulation studies: achieving the right mix in a large laboratory network. Pathology 2019; 51(7): 718-22.
  32. Воробьев А.И., Васильев С.А., Городецкий В.М. и др. Гиперкоагуляционный синдром: классификация, патогенез, диагностика, терапия. Гематология и трансфузиология 2016; 61(3): 116-22
  33. Sangamo Therapeutics, Inc. Sangamo provides clinical development update including early phase 1/2 beta thalassemia gene-edited cell therapy data. National Institutes of Health; 2019.
  34. Allergan plc and Editas Medicine, Inc. Allergan and Editas Medicine Initiate the Brilliance Phase 1/2 Clinical Trial of AGN-151587 (EDIT-101) for the Treatment of LCA10. National Institutes of Health; 2019.
  35. Jinek M., Chylinski K., Fonfara I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
  36. Editas Medicine. Diverse pipeline across range of diseases,
  37. CRISPR Therapeutics. Tackling a range of diseases with different approaches,
  38. Intellia Therapeutics. R&D pipeline: Looking ahead,
  39. CRISPR Therapeutics and Vertex Announce FDA Fast Track Designation for CTX001 for the Treatment of Sickle Cell Disease,
  40. FDA Clears Sangamo Biosciences’ IND Application of SB-318 for Treatment of MPS I,
  41. Sangamo BioSciences Announces FDA Clearance of Investigational New Drug Application for ZFN-Mediated Genome Editing Treatment of MPS II,
  42. Sangamo And Bioverativ Announce FDA Acceptance Of IND Application For ST-400,
  43. Bioverativ and Sangamo Announce FDA Acceptance of IND Application for Gene-Edited Cell Therapy BIVV003 to Treat Sickle Cell Disease,
  44. Sangamo BioSciences Announces FDA Clearance Of Investigational New Drug Application For SB-FIX, First In Vivo Protein Replacement Platform Program For Treatment Of Hemophilia B,
  45. Editas Medicine Announces FDA Acceptance of IND Application for EDIT-101,
  46. Expert meeting on genome editing technologies used in medicine development,
  47. Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
  48. Wang H., Yang H., Shivalila C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153(4): 910-8.
  49. Jiang W., Bikard D., Cox D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 2013; 31(3): 233-9.
  50. Bikard D., Jiang W., Samai P. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013; 41(15): 7429-37.
  51. Ran F.A., Hsu P.D., Lin C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 155(2): 479-80.
  52. Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013; 8(11): 2281-308.
  53. For journalists: statement and background on the crispr patent process,
  54. CRISPR-Cas systems and methods for altering expression of gene products,
  55. Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription,
  56. United states patent and trademark office,

Copyright (c) 2020 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies