Role of the immune system in COVID-19 pathomorphogenesis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The new coronavirus infection is a highly contagious infection caused by the SARS-CoV-2 virus that has become a global public health problem. The pathogenesis of this virus has not yet been clearly understood, the principles of hyperinflammatory immune response in critically ill patients, which leads to acute respiratory distress syndrome and multiple organ failure, innate and adaptive immune responses in the process of structuring the data under study. The interaction of the virus and a macroorganism includes 4 stages: infection, dissemination, cytokine storm, pulmonary fibrosis. This review analyzes the predictors of infection, its possible pathogenesis, the immune response of the macroorganism, as well as the histological characteristics of damage to immune organs; shows receptors for SARS-CoV-2 (ACE2, TMPRSS2) in some organs.

Full Text

Restricted Access

About the authors

E. D Studenikina

I.I. Mechnikov North-Western State Medical University

A. I Ogorelysheva

I.I. Mechnikov North-Western State Medical University

Ya. S Ruzov

I.I. Mechnikov North-Western State Medical University

I. R Khabibullin

I.I. Mechnikov North-Western State Medical University

I. Z Samorukova

I.I. Mechnikov North-Western State Medical University

O. N Chernova

I.I. Mechnikov North-Western State Medical University

Z. P Asaulenko

City Hospital № 40 of Kurortny District of Saint-Petersburg

M. O Mavlikeev

I.I. Mechnikov North-Western State Medical University

I. N Budnicova

I.I. Mechnikov North-Western State Medical University

V. I Nikolaev

I.I. Mechnikov North-Western State Medical University

S. A Vinnichuk

I.I. Mechnikov North-Western State Medical University

R. V Deev

I.I. Mechnikov North-Western State Medical University

References

  1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology 2020; 5(4): 536-44
  2. Ksiazek T.G., Erdman D., Goldsmith C.S. et al. SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. The New England journal of medicine 2003; 348(20): 1953-66.
  3. de Groot R.J., Baker S.C., Baric R.S. et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. Journal of virology 2013; 87(14): 7790-2.
  4. Мартусевич А.К. Система крови при инфицировании COVID-19: патогенетические механизмы нарушений и перспективы терапии. Молекулярная медицина 2020; 18(5): 3-10.
  5. Цинзерлинг В.А., Вашукова М.А., Васильева М.В. и др. Вопросы патоморфогенеза новой коронавирусной инфекции (COVID-19). Журнал инфектологии 2020; 12(2): 5-11.
  6. Рыбакова М.Г., Карев В.Е., Кузнецова И.А. и др. Патологическая анатомия новой коронавирусной инфекции COVID-19. Первые впечатления. Архив патологии 2020; 82(5): 5-15.
  7. Коган Е.А., Березовский Ю.С., Проценко Д.Д. и др. Патологическая анатомия инфекции, вызванной SARS-QdV-2. Судебная медицина 2020; 6(2): 8-30.
  8. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. 2020 Oct 27. https:// coronavirus.jhu.edu/map.html.
  9. Забозлаев Ф.Г., Кравченко Э.В., Галлямова А.Р. и др. Патологическая анатомия легких при новой коронавирусной инфекции (COVID-19). Предварительный анализ аутопсийных исследований. Клиническая практика 2020; 11(2): 21-37.
  10. Zou X., Chen K., Zou J. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of medicine 2020; 14(2): 185-92.
  11. Lek M., Karczewski K.J., Minikel E.V. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536 (7616): 285-91.
  12. Hou, Y., Zhao, J., Martin W. et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Medicine 2020; 18: 216.
  13. Hаmming I., Timens W., Bulthuis M. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology 2004; 203(2): 631-7.
  14. Li M.Y., Li L., Zhang Y. et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious diseases of poverty 2020; 9: 45.
  15. Hikmet F., Mear L., Edvinsson A. et al. The protein expression profile of ACE2 in human tissues. Molecular systems biology 2020; 16: е9610.
  16. Dong M., Zhang J., Ma X. et al. ACE2, TmPrSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomedicine & Pharmacotherapy 2020; 131: 110678.
  17. Tang J.W., To K.F., Lo A.W.I. et al. Quantitative temporal-spatial distribution of Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) in post-mortem tissues. Journal of medical virology 2007; 79: 1245-53.
  18. Беляков Н.А., Рассохин В.В., Ястребова Е.Б. Коронавирусная инфекция COVID-19. Природа вируса, патогенезез, клинические проявления. Сообщение 1. ВИЧ-инфекция и иммунология 2020; 12(1): 7-21.
  19. Ziegler C.G.K., Allon S.J., Nyquist S.K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181(5): 1016-35.
  20. Martines R.B., Ritter J.M., Matkovic E. et al. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerging infectious diseases 2020; 26(9): 2005-15.
  21. Yilla M., Harcourt B.H., Hickman C.J. et al. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Research 2005; 107: 93-101.
  22. Chen Z., Wherry J.E. T. cell responses in patients with COVID-19. Nature reviews. Immunology 2020; 20: 529-36.
  23. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature reviews. Immunology 2020; 20: 355-62.
  24. Emad A.S., Farida E.S. The quarantine effect on vitamin D. level and the immunity against COVID 19 viruses. Virology & Immunology Journal 2020, 4(1): 000240.
  25. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020; 395(10234): 1417-18.
  26. Perico L., Benigni A., Casiraghi F. et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature reviews. Nephrology 2021; 17: 46-64.
  27. Ahmetaj-Shala B., Peacock T. P., Baillon L. et al. Resistance of endothelial cells to SARS-CoV-2 infection in vitro. bioRxiv. In press 2020. doi: 10.1101/2020.11.08.372581.
  28. Schaefer I.M., Padera R.F., Solomon I.H. et al. In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Modern pathology: an official journal of the United States and Canadian Academy of Pathology 2020; 33: 2104-14.
  29. Tan C., Li S., Liang Y. et al. SARS-CoV-2 viremia may predict rapid deterioration of COVID-19 patients. The Brazilian Journal of Infectious Diseases 2020; 24: 565-9.
  30. Siddiqi H.K., Weber B., Zhou G. et al. Increased prevalence of myocardial injury in patients with SARS-CoV-2 viremia. The American Journal of Medicine 2020; 20: 30933-5.
  31. Fajnzylber J., Regan J., Coxen K. et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nature communications 2020; 11: 5493.
  32. Liu Y., Yang Y., Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury Science China. Life sciences 2020; 63(3): 364-74.
  33. Lai C.C., Shih T.P., Ko W.C. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents 2020; 55(3): 105924.
  34. Fenrich M., Mrdenovic S., Balog M. et al. SARS-CoV-2 Dissemination Through Peripheral Nerves Explains Multiple Organ Injury. Frontiers in cellular neuroscience 2020; 14: 229.
  35. Park M.D. Macrophages: a trojan horse in COVID-19? Nature reviews. Immunology 2020; 20: 351.
  36. Zheng M., Gao Y., Wang G. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular and molecular immunology 2020; 17: 533-5.
  37. Wang F., Nie J., Wang H. et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. The Journal of infectious diseases 2020; 221(11): 1762-9.
  38. Diao B., Wang C., Tan Y. et al. Reduction and functional exhaustion of T. cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in immunology 2020; 11: 827.
  39. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet. Respiratory medicine 2020; 8(4): 420-2.
  40. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. The Journal of the American Medical Association 2020; 323(11): 1061-9.
  41. Freeman T.L., Swartz T.H. Targeting the NLRP3 inflammasome in severe COVID-19. Frontiers in immunology 2020; 11: 1518.
  42. Авербах М. М., Панова Л.В., Губкина М.Ф. Динамические изменения хемокина cxcl-10 (IP-10) у детей и подростков, больных различными формами туберкулеза органов дыхания. Медицинская иммунология 2016; 3: 279-86.
  43. Козырева А. Р., Львова Т. Ю., Маркова К. Л. и др. Влияние депривации VEGF на образование сосудов эндотелием в присутствии макрофагов. Медицинская иммунология 2020; 2: 231 -48.
  44. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 2020; 395(10229): 1033-4.
  45. Абакушина Е.В. Иммунологические аспекты коронавирусной болезни, вызванной SARS-CoV-2. Гены & Клетки. 2020; 15(3).
  46. Behrens E.M., Koretzky G.A. Review: cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheumatology 2017; 69(6): 1135-43.
  47. Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology 2017; 39(5): 517-28.
  48. Huang K.J., Su I.J., Theron M. et al. An interferon-gamma-related cytokine storm in SARS patients. Journal of medical virology 2005; 75(2): 185-94
  49. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine 2020; 46(5): 846-8.
  50. MCGonagle D., Sharif K., O'Regan A., Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmunity Reviews 2020; 19: 102537.
  51. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395(10223): 497-506.
  52. McClain M.T., Park L.P., Nicholson B. et al. Longitudinal analysis of leukocyte differentials in peripheral blood of patients with acute respiratory viral infections. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology 2013; 58: 689-95.
  53. Liao M., Liu Y., Yuan J. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature Medicine 2020; 26: 842-4.
  54. Giamarellos-Bourboulis E. J., Netea M.G., Rovina N. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell host and microbe 2020; 27: 992-1000.
  55. Mazzoni A., Salvati L., Maggi L. et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. The Journal of clinical investigation 2020; 130(9): 4694-703.
  56. Xiong Y., Liu Y., Cao L. et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerging Microbes and Infections 2020; 9(1): 761-70.
  57. Tan L., Wang Q., Zhang D. et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduction and Targeted Therapy 2020; 5: 33.
  58. Bermejo-Martin J.F., Almansa R., Menendez R. et al. Lymphopenic community acquired pneumonia as signature of severe COVID-19 infection. The Journal of Infectious Diseases 2020; 80(5): 23-4.
  59. Mathew D., Giles J.R., Baxter A.E. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science (New York, N.Y.) 2020; 369(6508): eabc8511.
  60. Diao B., Wang C., Tan Y. et al. Interferon-reduction and functional exhaustion of T. Cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in immunology 2020; 11: 827.
  61. Zheng H.Y., Zhang M., Yang C.X. et al. Elevated exhaustion levels and reduced functional diversity of T. cells in peripheral blood may predict severe progression in COVID-19 patients. Cellular and Molecular Immunology 2020; 17(5): 541-3.
  62. Chiappelli F., Khakshooy A., Greenberg G. COVID-19 immunopathology and immunotherapy. Bioinformation 2020; 16(3): 219-22.
  63. Tan Y.J., Goh P.Y., Fielding B.C. et al. Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clinical and diagnostic laboratory immunology 2004; 11(2): 362-71.
  64. Rodriguez Y., Novelli L., Rojas M. et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. Journal of Autoimmunity 2020; 114: 102506.
  65. Guo L., Ren L., Yang S. et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2020; 71(15): 778-85.
  66. Minton K. DAMP-driven metabolic adaptation. Nature Reviews Immunology 2020; 20(1): 1.
  67. Ricke D.O., Malone R.W. Medical countermeasures analysis of 2019-nCoV and vaccine risks for antibody-dependent enhancement (ADE). In press 2020. doi: 10.20944/preprints202003.0138.v1.
  68. Hertzog P.J., O'Neill L.A., Hamilton JA The interferon in TLR signaling: more than just antiviral. Trends in immunology 2003; 24(10): 534-9.
  69. Blanco-Melo D., Nilsson-Payant B.E., Liu W.C. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036-45.
  70. Ehrenfeld M., Tincani A., Andreoli L. et al. Covid-19 and autoimmunity. Autoimmunity Reviews 2020; 19(8): 102597.
  71. Rojas M., Restrepo-Jimenez P., Monsalve D.M. et al. Molecular mimicry and autoimmunity. Journal of Autoimmunity 2018; 95: 100-23.
  72. Smatti M.K., Cyprian F.S., Nasrallah G.K. et al. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses 2019; 11: 762.
  73. Bastard P., Rosen L.B., Zhang Q. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science (New York, N.Y.) 2020; 370(6515): eabd4585
  74. Casciola-Rosen L., Thiemann D. R., Andrade F. et al. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19. medRxiv. In press 2020. doi: 10.1101/2020.10.13.20211664
  75. Roncati L., Ligabue G., Nasillo V. et а!. A proof of evidence supporting abnormal immunothrombosis in severe COVID-19: naked megakaryocyte nuclei increase in the bone marrow and lungs of critically ill patients. Platelets 2020; 31(8): 1085-9.
  76. Chen X.B., Du S.H., Lu J.C. et al. Retrospective analysis of 61 cases of children died of viral pneumonia. Fa Yi Xue Za Zhi 2020; 36(2): 164-8.
  77. Xu X., Chang X.N., Pan H.X. et al. Pathological changes of the spleen in ten patients with coronavirus disease 2019(COVID-19) by postmortem needle autopsy. Zhonghua Bing Li Xue Za Zhi 2020; 49(6): 576-82.
  78. Debliquis А., Harzallah I., Mootien J.Y. et а1 Haemophagocytosis in bone marrow aspirates in patients with COVID-19. The British Journal of Haematology 2020; 190(2): 70-3.
  79. Prilutskiy A., Kritselis M., Shevtsov A. et al. SARS-CoV-2 infection-associated hemophagocytic lymphohistiocytosis. The American Journal of Clinical Pathology 2020; 154(4): 466-74.
  80. Rehman S., Majeed T., Azam Ansari M. et а1 Current scenario of COVID-19 in pediatric age group and physiology of immune and thymus response. Saudi journal of biological sciences 2020; 27(10): 2567-73.
  81. Gu J., Gong E., Zhang B. et al. Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine 2005; 202(3): 415-24.
  82. Vinciguerra M., Greco E. SARS-CoV-2 and black population: ACE2 as shield or blade? Infection, Genetics and Evolution 2020; 84: 104361.
  83. Kabarriti R., Brodin N.P., Maron M. et al. Association of race and ethnicity with comorbidities and survival among patients with COVID-19 at an Urban Medical Center in New York. JAMA Network Open 2020; 3(9): e2019795.
  84. Epidemiology Working Group for NCIP Epidemic Response. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chinese Journal Epidemiology 2020; 41: 145-51.
  85. Taneja V. Sex hormones determine immune response. Frontiers in Immunology 2018; 9: 1931.
  86. Stopsack K.H., Mucci L.A., Antonarakis E.S. et al. TMPRSS2 and COVID-19: serendipity or opportunity for intervention? Cancer discovery 2020; 10(6): 779-782.
  87. Baratchian M., McManus J., Berk M. et al. No evidence that androgen regulation of pulmonary TMPRSS2 explains sex-discordant COVID-19 outcomes. bioRxiv. In press 2020.
  88. Dragin N., Bismuth J., Cizeron-Clairac G. et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. The Journal of clinical investigation 2016; 126: 1525-37.
  89. Симбирцев А.С., Тотолян А.А. Коронавирусная инфекция COVID-19 (лекция). Иммунопатогенез и перспективы иммунотерапии корона-вирусной инфекции, https://cutt.ly/tj5jLZ0.
  90. Muller O., Neuhann F., Razum O. Epidemiologie und Kontrollmaftnah-men bei COVID-19 Deutsche medizinische Wochenschrift 2020; 145: 670-4.
  91. Деев Р.В. Клеточная трансплантация в программе лечения COVID-19: пересадка стволовых стромальных (мезенхимальных) клеток. Гены & Клетки. 2020; 15(2): 10-19.
  92. Wang D., Yin Y., Hu C. et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Critical care (London, England) 2020; 24(1): 188.
  93. Сайганов С.А., Мазуров В.И., Бакулин И.Г. и др. Клиническое течение, эффективность терапии и исходы новой коронавирусной инфекции: предварительный анализ. Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова 2020; 12(2): 27-38.
  94. Fekkar A., Poignon C., Blaize M. et al. Fungal infection during COVID-19: does aspergillus mean secondary invasive aspergillosis? American journal of respiratory and critical care medicine 2020; 202(6): 902-3.
  95. Jang J.G., Hur J., Hong K.S. et al. Prognostic accuracy of the SIRS, qSOFA, and NEWS for early detection of clinical deterioration in SARS-CoV-2 infected patients. Journal of Korean medical science 2020; 35(25): 234.
  96. Mortality in the most affected countries. https://coronavirus.jhu. edu/data/mortality.
  97. Grippo F., Navarra, Orsi C. et al. The role of COVID-19 in the death of SARS-CoV-2-positive patients: a study based on death certificates. Journal of Clinical Medicine 2020; 9(11): 3459.
  98. Pellaud C., Grandmaison G., Pham Huu Thein H.P. et al. Characteristics, comorbidities, 30-day outcome and in-hospital mortality of patients hospitalised with COVID-19 in a Swiss area - a retrospective cohort study. The Swiss Medical Weekly 2020; 150: w20314.
  99. Cobos-Siles M., Cubero-Morais P., Arroyo-Jimenez I. et al. Cause-specific death in hospitalized individuals infected with SARS-CoV-2: more than just acute respiratory failure or thromboembolic events. International Journal of Emergency Medicine 2020; 15: 1533-44.
  100. Grasselli G., Zangrillo A., Zanella A. et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA Published online 2020. doi:10.1001/ jama.2020.5394.
  101. Siordia J.A. Jr. Epidemiology and clinical features of COVID-19: A review of current literature. Journal of Clinical Virology 2020; 127: 104357.
  102. Li R., Pei S., Chen B. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (COVID-19). Science (New York, N.Y.) 2020; 368(6490): 489-93.
  103. Wu Z., McGoogan J.M. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China. Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. The Journal of the American Medical Association 2020; 323(13): 1239-42.
  104. Повзун С.А. Патологическая анатомия и патогенез инфекционно-воспалительного эндотоксикоза [диссертация]. Санкт-Петербург: Военно-медицинская академия; 1994.
  105. Повзун С.А. Важнейшие синдромы: патогенез и патологическая анатомия. Издательско-полиграфическая компания «КОСТА». 2009; 480.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies