Serum cytokine profile indicators after subcutaneous implantation of the decellularized esophagus matrix in rats



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Study of postimplantation immune response to decellularized matrices has great importance for assessing biocompatibility of tissue-engineered structures based on them, since inflammatory process and excessive production of inflammatory mediators lead to complications and implant rejection. The aim of this research: serum cytokine profile studying after subcutaneous implantation of decellularized esophagus matrix in rats. Experimental data were obtained on male Wistar rats aged 5-6 months (n=55). Rats were divided into 4 groups: two control groups, experimental and comparison group. Control group 1 consisted of conditionally healthy rats (n=10), control group 2 - shame-operated animals (incision in scapula without implantation, n=15). In experimental group (n=15), rats underwent subcutaneous implantation of decellularized esophagus fragments; in group 2 (n=15) - native esophagus fragments. Peripheral blood sampling and fragment explantation were performed on 7th, 14th and 21st experimental days. Serum samples were tested for IL1a, IL2, IL4, IL17A, TNFa, IFNy, GM-CSF content by ELISA. Explanted native esophagus and decellularized esophagus fragments were subjected to histological analysis. On 7th experimental day, significant increase in IL1 a content was observed in rats with implantation of decellularized esophagus fragments. IL17A, IFNy, GM-CSF content significantly decreased. On 14th day, IL17A concentration sharply decreased in comparison with value on 7th experimental day and control 1. IL1 a and IFNy concentration decreased in comparison with control group 1 values and 7th day respectively. On 21st day, dynamics of decrease in IL17A, IFNy, IL1 a content in this rat group was revealed. Thus, it was found change in concentrations of studied cytokines corresponds to regeneration histomorphological picture in group that underwent implantation of acellular matrices against of active inflammatory reaction in comparison group. Concentrations of IL1 a, IL4, IL17A, IFNy reflect positive dynamics of wound healing process and absence of decellularized matrix rejection.

Full Text

Restricted Access

About the authors

K. I Melkonyan

Kuban State Medical University

Email: kimelkonian@gmail.com

R. Z Nakokhov

Kuban State Medical University

T. V Rusinova

Kuban State Medical University

Y. A Kozmai

Kuban State Medical University

I. M Bykov

Kuban State Medical University

A. N Redko

Kuban State Medical University

S. N Alekseenko

Kuban State Medical University

References

  1. Costa F., Silva R., Boccaccini A.R. Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair. In: Barbosa M.A., Martins C.L., editors. Peptides and proteins as biomaterials for tissue regeneration and repair. Cambridge: Woodhead Publishing; 2018. p. 175-204.
  2. Londono R., Badylak S.F. Regenerative medicine strategies for esophageal repair. Tissue Eng. Part B-Re. 2015; 21(4): 393-410.
  3. Cui H., Chai Y., Yu Y. Progress in developing decellularized bioscaffolds for enhancing skin construction. J. Biomed. Mater. Res. Part A 2019; 107A: 1849-59.
  4. Губарева Е.А., Куевда Е.В., Быков М.И. и др. Оптимизация протокола децеллюляризации с целью сохранения ангиогенных свойств биологического каркаса пищевода. Медицинский вестник Северного Кавказа 2019; 14(1.2): 186-92.
  5. Kwon T., Moon K.H. Decellularization. In: Kim B., editor. Clinical regenerative medicine in urology. Singapore: Springer; 2018. p. 125-41.
  6. Сотниченко А.С., Губарева Е.А., Куевда Е.В. и др. К вопросу о морфологических критериях децеллюляризации органов и тканей. Вестник трансплантологии и искусственных органов 2017; 19(3): 65-9
  7. Arakelian L., Kanai N., Dua K. et al. Esophageal tissue engineering: from bench to bedside. Ann. N.Y. Acad. Sci. 2018; 1434(1): 156-63.
  8. Anderson J.M. Biological responses to materials. Annu. Rev. Mater. Res. 2001; 31(1): 81-110.
  9. Sheikh Z., Brooks P.J., Barzilay O. et al. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials 2015; 8: 5671-701.
  10. Mintern J.D., Villadangos J.A. Editorial overview: New proteins, cellular processes and intercellular interactions involved in antigen presentation. Curr. Opin. Immunol. 2019; 58: III-IV.
  11. Ishii M. Imaging of inflammation and regeneration: a novel trend dissecting dynamic features of biological phenomena in vivo. Inflamm. Reg. 2017; 37(26): 1-2.
  12. Domaga a-Kulawik J., Radkowski M., Stelmaszczyk-Emmel A. et al. Cytokine network in relation to regulatory cells in lung cancer microenvironment. Eur. Respir. J. 2017; 50(61): PA4211.
  13. Азарова Д.А., Чумакова С.П., Уразова О.И. и др. Интерлейкины 4 и 6 как факторы модуляции субпопуляционного состава моноцитов крови у больных ишемической кардиомиопатией. Казанский медицинский журнал 2018; 99(6): 900-5.
  14. Паскова Е.В., Шахгельдян К.И., Маркелова Е.В. Оценка динамики содержания интерлейкина-17 и интерлейкина-4 в сыворотке крови при пост-травматическом остеомиелите нижней челюсти. Клиническая стоматология 2019; 2: 62-4.
  15. Унт Д.В., Лобов Г.И. Сократительная функция лимфатических узлов: эффекты интерлейкина-1р и интерлейкина-2. Современные проблемы науки и образования 2016; 5, http://www.science-education.ru/ ru/article/view?id=25149.
  16. Газатова Н.Д., Меняйло М.Е., Малащенко В.В. и др. Прямые эффекты гранулоцитарно-макрофагального колониестимулирующего фактора на функциональные свойства моноцитов/макрофагов человека. Медицинская иммунология. 2019; 21(3): 419-25.
  17. Gunay H., Staufenbiel I., Geurtsen W. et al. The granulation tissue preservation technique in regenerative therapy of peri-implantitis - a treatment concept with case reports. Dtsch. Zahnarztl. Z. Int. 2019; 1: 4-15.
  18. Raetska Y.B., Chornenka N.M., Koval T.V. et al. Cytokine profile indicators in rat blood serum in a model of esophagus burn induced by antioxidant chemical preparation. Biomed. Res. Ther. 2017; 4(9): 1591-606.
  19. Rizza R., Moretti F., Capone I. et al. Role of type I. interferon in inducing a protective immune response: perspectives for clinical applications. Cytokine Growth F. R. 2015; 26(2): 195-201.
  20. Карагодин В.П., Бобрышев Ю.В., Орехов А.Н. Воспаление, иммунокомпетентные клетки, цитокины - роль в атерогенезе. Патогенез 2014; 12(1): 21-35.
  21. Sun B.K., Siprashvili Z., Khavari P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014; 346(6212): 941-5.
  22. Tesmer L.A., Lundy S.K., Sarkar S. et al. Th17 cells in human disease. Immunol Rev. 2008; 223: 87-113.
  23. Ouyang W., Kolls J.K., Zheng Y. The biological functions of T. helper 17 cell effector cytokines in inflammation. Immunity 2008; 28(4): 454-67.
  24. Agarwal N. UVR and role of pigmentation in skin aging and cancer. In: Dwivedi A., Agarwal N., Ray L. et al. editors. Skin Aging & Cancer. Singapore: Springer; 2019. p. 59-69.
  25. Duncan M.R., Berman B. Differential regulation of collagen, glycos-aminoglycan, fibronectin, and collagenase activity production in cultured human adult dermal fibroblasts by interleukin 1-alpha and beta and tumor necrosis factor-alpha and beta. J. Invest. Dermatol. 1989; 92(5): 699-706.
  26. Зорин В.Л., Зорина А.И., Петракова О.С. и др. Дермальные фибробласты для лечения дефектов кожи. Гены & Клетки 2009; IV(4): 26-40.
  27. Rahimnejad M., Derakhshanfar S., Zhong W. Biomaterials and tissue engineering for scar management in wound care. Burns & Trauma 2017; 5: 4.
  28. Razaghi A., Owens L., Heimann K. Review of the recombinant human interferon gamma as an immunotherapeutic: impacts of production platforms and glycosylation. J. Biotechnol. 2016; 240: 48-60.
  29. Fiorillo L., Cervino G., Herford A.S. et al. Interferon crevicular fluid profile and correlation with periodontal disease and wound healing: A systemic review of recent data. Int. J.M. Sci. 2018; 19(7): 1908-18.
  30. Chen K., Liu J., Cao X. Regulation of type I. interferon signaling in immunity and inflammation: A comprehensive review. J. Autoimmun. 2017; 83: 1-11.
  31. Lima M.S.R., de Lima V.C.O., Piuvezam G. et al. Mechanisms of action of molecules with anti-TNF-alpha activity on intestinal barrier inflammation: A systematic review protocol. Medicine 2019; 98(39): 17285-300.
  32. Kim Y.S., Morgan M.J., Choksi S. et al. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 2007; 26(5): 675-87.
  33. Литвицкий П.Ф., Синельникова Т.Г. Врожденный иммунитет: механизмы реализации и патологические синдромы. Часть 4. Вопросы современной педиатрии 2009; 8(4): 95-101.
  34. Li-Weber M., Krammer P.H. Regulation of IL4 gene expression by T. cells and therapeutic perspectives. Nat. Rev. Immunol. 2003; 3(7): 534-43.
  35. Weiner H.L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunological Reviews 2001; 182(1): 207-14.
  36. Franz S., Rammelt S., Scharnweber D. et al. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011; 32(28): 6692-709.
  37. Julier Z., Park A.J., Briquez P.S. et al. Promoting tissue regeneration by modulating the immune system. Acta Biomaterialia 2017; 53: 13-28.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies