Test-system in vitro for screening of therapeutic drugs with IL-17A inhibitory activity



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

To achieve greater clinical relevance of the newly discovered compounds, modern drug discovery requires disease-targeted assays based on human cells. The specific aim of this study was to design and develop a new cell-based assay for screening of compounds with IL-17A inhibitory activity. Human foreskin fibroblasts (HFF) were treated with IL-17A alone (experimental conditions I) or a mixture of IL-17A inhibitor netakimab and IL-17A (experimental conditions II). IL-17A - dependent production of inflammatory mediators IL-6, IL-8, MCP-1 was evaluated by ELISA (enzyme-linked immunosorbent assay). The study demonstrated the ability of HFF subcultured in vitro for a long time (>20 passages) to respond to IL-17A treatment by increased production of inflammatory cytokines IL-6, IL-8, MCP-1. Neutralization of IL-17A by netakimab (IL-17A inhibitor) resulted in a dose-dependent decrease of inflammatory cytokines production into cell growth medium. Thus, a new cell-based assay to evaluate the biological activity of Il-17A inhibitors has been developed and tested. The assay is based on the analysis of IL-17A-dependent production of inflammatory cytokines synthesized by human dermal fibroblasts. Netakimab has been shown to be a highly potent inhibitor of IL-17A.

Full Text

Restricted Access

About the authors

N. K Ossina

Samara State Medical University

Email: nossina@gmail.com

E. I Pugachev

Samara State Medical University

I. A Kolyadenko

Institute of Protein Research of the RAS

V. V Pryazhkina

Samara State Medical University

E. G Shakurov

Samara State Medical University

E. V Orlov

Samara State Medical University

L. T Volova

Samara State Medical University

References

  1. Beringer A., Noack M., Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol. Med. 2016; 22(3): 230-41.
  2. Liang Y., Sarkar M.K., Tsoi L.C. et al. Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr. Opin. Immunol. 2017; 49: 1-8.
  3. Griffiths C.E., Barker J.N. Pathogenesis and clinical features of psoriasis. Lancet 2007; 370(9583): 263-71.
  4. Ettehadi P., Greaves M.W., Wallach D. et al. Elevated tumour necrosis factor-alpha (TNF-a) biological activity in psoriatic skin lesions. Clin. Exp. Immunol. 2008; 96(1): 146-51.
  5. Lee E., Trepicchio W.L., Oestreicher J.L. et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 2004; 199(1): 125-30.
  6. Onishi R.M., Gaffen S.L. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 2010; 129(3): 311-21.
  7. Coimbra S., Figueiredo A., Castro E. et al. The roles of cells and cytokines in the pathogenesis of psoriasis. Int. J. Dermatol. 2012; 51(4): 389-98.
  8. Martin D.A., Towne J.E., Kricorian G. et al. The emerging role of IL-17 in the pathogenesis of psoriasis: Preclinical and clinical findings. J. Invest. Dermatol. 2013; 133(1): 17-26.
  9. Mease P.J., Antoni C.E. Psoriatic arthritis treatment: biological response modifiers. Ann. Rheum. Dis. 2005; 64 Suppl 2: 78-82.
  10. Кубанов А.А., Бакулев А.Л., Самцов А.В. и др. Нетакимаб - новый ингибитор ИЛ-17А: результаты 12 недель клинического исследования III фазы BCD-085-7/PLANETA у пациентов со среднетяжелым и тяжелым вульгарным псориазом. Вестник дерматологии и венерологии 2019; 95(2): 15-28.
  11. Blauvelt A., Puig L., Chimenti S. et al. Biosimilars for psoriasis: clinical studies to determine similarity. Br.J. Dermatol. 2017; 177(1): 23-33.
  12. Horvath P., Aulner N., Bickle M. et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 2016; 15(11): 751-69.
  13. Eglen R., Gilchrist A., Reisine T. An overview of drug screening using primary and embryonic stem cells. Comb. Chem. High Throughput Screen. 2008; 11(7): 566-72.
  14. Dunne A., Jowett M., Rees S. Use of primary human cells in high-throughput screens. Methods Mol. Biol. 2009; 565: 239-57.
  15. Podgurskaya A.D., Tsvelaya V.A., Slotvitsky M.M. et al. The Use of iPSC-Derived Cardiomyocytes and Optical Mapping for Erythromycin Arrhythmogenicity Testing. Cardiovasc. Toxicol. 2019; 19(6): 518-28.
  16. Liang P., Lan F., Lee A.S. et al. Drug Screening Using a Library of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Disease Specific Patterns of Cardiotoxicity. Circulation 2013; 127(16): 1-29.
  17. Hunsberger J.G., Efthymiou A.G., Malik N. et al. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System. Stem Cells Dev. 2015; 24(16): 1852-64.
  18. Lago J.C., Puzzi M.B. The effect of aging in primary human dermal fibroblasts. PLoS One 2019; 14(7): 1-14
  19. Зорина А.И., Бозо И.Я., Зорин В.Л. и др. Фибробласты дермы: особенности цитогенеза, цитофизиологии и возможности клинического применения. Клеточная трансплантология и тканевая инженерия 2011; VI(2): 15-26
  20. Fang F., Ni K., Cai Y. et al. Biological characters of human dermal fibroblasts derived from foreskin of male infertile patients. Tissue Cell 2017; 49(1): 56-63.
  21. Wright J.F., Bennett F., Li B. et al. IL-17RA/IL-17RC Receptor Complex Cytokine Signals through the The Human IL-17F/IL-17A Heterodimeric. J. Immunol. Ref. 2008; 181: 2799-805.
  22. Debets R., Hegmans P.J.J., Deleuran M. et al. Expression of cytokines and their receptors by psoriatic fibroblasts I. Altered IL-6 synthesis. Cytokine 1996; 8(1): 70-9.
  23. Noack M., Beringer A., Miossec P. Additive or synergistic interactions between IL-17A or IL-17F and TNFa or IL-1 p depend on the cell type. Front. Immunol. 2019; 10: 1-12.
  24. Гринберг К.Н., Кухаренко В.И., Ляшко В.Н. и др. Культивирование фибробластов человека для диагностики наследственных болезней. В: Вахтин Ю.Б., Соминина А.А., редакторы. Методы культивирования клеток. Ленинград: Наука; 1987. c. 250-7.
  25. Gadagkar S.R., Call G.B. Computational tools for fitting the Hill equation to dose-response curves. J. Pharmacol. Toxicol. Methods 2015; 71: 68-76.
  26. Zaman G.J.R., de Roos J.A.D.M., Blomenrohr M. et al. Cryopre-served cells facilitate cell-based drug discovery. Drug Discov. Today 2007; 12(13-14): 521-6.
  27. Barygina V., Becatti M., Prignano F. et al. Fibroblasts to keratino-cytes redox signaling: The possible role of ROS in psoriatic plaque formation. Antioxidants 2019; 8(11): 1-20.
  28. Зорин В.Л., Зорина А.И., Петракова О.С. и др. Дермальные фибро-бласты для лечения дефектов кожи. Клеточная трансплантология и тканевая инженерия 2009; IV(4): 26-40.
  29. Werner S., Krieg T., Smola H. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol. 2007; 127(5): 998-1008.
  30. Yao Z., Fanslow W.C., Seldin M.F. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995; 3(6): 811-21.
  31. Benedetti G., Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur. J. Immunol. 2014; 44(2): 339-47.
  32. Behfar S., Hassanshahi G., Nazari A. et al. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 2018; 110: 226-31.
  33. Giustizieri M.L., Mascia F., Frezzolini A. et al. Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T. cell-derived cytokines. J. Allergy Clin. Immunol. 2001; 107 Suppl 5: 871-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies