Establishment of breast carcinoma cell lines



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Obtaining of a primary cell culture of breast carcinoma is necessary both for the study of molecular and cellular mechanisms of tumor growth and for the selection of personalized therapy. However, when obtaining such culture, technical difficulties arise: poor adhesion to the substrate, increased growth of fibroblasts in culture, early aging, and others. The review describes the main options for culturing breast carcinoma cells - two-dimensional cultures, three-dimensional cultures, tissue sections, and also discusses methods for their preparation. The results of studies on changes in the receptor apparatus during cultivation and assessment of the effect of anticancer drugs on breast carcinoma cells in vitro are presented.

Full Text

Restricted Access

About the authors

A. S Mogilenskikh

Institute of Medical Cell Technologies; Ural State Medical University

S. V Sazonov

Institute of Medical Cell Technologies; Ural State Medical University

Email: prof-ssazonov@yandex.ru

References

  1. Галимова Э.С., Галагудза М.М. Двухмерные и трехмерные модели культур клеток опухолей in vitro. Преимущества и недостатки. Бюллетень сибирской медицины 2018; 17(3): 188-96.
  2. Ali R., Samman N., Al Zahrani H. et al. Isolation and characterization of a new naturally immortalized human breast carcinoma cell line, KAIMRC1. BMC Cancer 2017; 17(1): 803.
  3. Zhao P., Zhou W., Liu C. et al. Establishment and Characterization of a CTC Cell Line from Peripheral Blood of Breast Cancer Patient. J. Cancer 2019; 10(24): 6095-104.
  4. Bezdieniezhnykh N., Lykhova A., Semesiuk N. et al. Establishment and characterization of new breast and ovarian cancer cell lines as a model for studying cellular plasticity in vitro. Exp. Oncol. 2016; 38(2): 94-100.
  5. Ghaderi F., Mehdipour F., Hosseini A. et al. Establishment and Characterization of a New Triple Negative Breast Cancer Cell Line from an Iranian Breast Cancer Tissue. Asian Pac. J. Cancer Prev. 2019; 20(6): 1683-9.
  6. Gu M., Shen C. Novel cancer cell lines derived from primary breast tumors in Chinese patients. Am.J. Transl. Res. 2018; 10(12): 3956-68.
  7. Геращенко Т.С., Денисов Е.В., Литвяков Н.В. и др. Внутриопухолевая гетерогенность: природа и биологическое значение (обзор). Биохимия 2013; 78: 1531-49.
  8. Gillet J.P., Calcagno A.M., Varma S. et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anticancer drug resistance. PNAS USA 2011; 108(46): 18708-13.
  9. Qu Y., Han B., Yu Y. et al. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493126/.
  10. Cree I.A., Glaysher S., Harvey A.L. Efficacy of anti-cancer agents in cell lines versus human primary tumour tissue. Curr. Opin. Pharmacol. 2010; 10(4): 375-9.
  11. Mitra A., Mishra L., Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol. 2013; 31(6): 347-54.
  12. Freshney R.I. Induction of differentiation in neoplastic cells. Anticancer Res. 1985; 5(1): 111-30.
  13. Lasfargues E.Y., Ozzello L. Cultivation of human breast carcinomas. J. Natl. Cancer Inst. 1958; 21(6): 1131-47.
  14. McCallum H.M., Lowther G.W. Long-term culture of primary breast cancer in defined medium. Breast Cancer Research and Treatment 1996; 39(3): 247-59.
  15. Нуштаева А.А. Культуры онкотрансформированных клеток молочной железы и эндометрия для изучения опухолевой прогрессии и разработки терапевтических подходов [диссертация]. Новосибирск: Институт химической биологии и фундаментальной медицины СО РАН; 2019.
  16. Liu X., Ory V., Chapman S. et al. ROCK Inhibitor and Feeder Cells Induce the Conditional Reprogramming of Epithelial Cells. The American Journal of Pathology 2015; 180(2): 599-607.
  17. Janik K., Popeda M., Peciak J. et al. Efficient and simple approach to in vitro culture of primary epithelial cancer cells, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5146827/.
  18. Alamri A.M., Kang K., Groeneveld S. et al. Primary cancer cell culture: mammary-optimized vs conditional reprogramming. Endocr. Relat. Cancer 2016; 23(7): 535-54.
  19. Esparza-Lopez J., Ramos-Elias P.A., Castro-Sanchez A. et al. Primary breast cancer cell culture yields intra-tumor heterogeneous subpopulations expressing exclusive patterns of receptor tyrosine kinases. BMC Cancer 2016; 16(1): 740.
  20. Cobleigh M.A., Kennedy J.L., Wong A.C. et al. Primary culture of squamous head and neck cancer with and without 3T3 fibroblasts and effect of clinical tumor characteristics on growth in vitro. Cancer 1987; 59(10): 1732-8.
  21. Wang C.S., Goulet F., Tremblay N. et al. Selective culture of epithelial cells from primary breast carcinomas using irradiated 3T3 cells as feeder layer. Pathol. Res. Pract. 2001; 197(3): 175-81.
  22. Krasna L., Dudorkinova D., Vedralova J. et al. Large expansion of morphologically heterogeneous mammary epithelial cells, including the luminal phenotype, from human breast tumours. Breast Cancer Res. Treat. 2002; 71: 219-35.
  23. Matouskova E., Dudorkinova D., Pavlikova L. et al. Clonal expansion of epithelial cells from primary human breast carcinoma with 3T3 feeder layer technique. Folia Biol. 1998; 44(2): 67-71.
  24. Могиленских А.С., Сазонов С.В., Демидов С.М. Оптимизация условий культивирования первичной карциномы молочной железы человека. В: Сборник научных докладов VI Петербургского международного онкологического форума «Белые ночи 2020»; 2020, 25-28 июня; Санкт-Петербург, Россия; 2020. с. 98.
  25. Могиленских А.С., Седнева-Луговец Д.А. Сравнение роста первичной культуры карциномы молочной железы в различных условиях для культивирования. В: Цап Н.А., редактор. Материалы V. Международной научно-практической конференции молодых учёных и студентов; 2020, 9-10 апреля; Екатеринбург, Россия; 2020. с. 128-32.
  26. Vande Voorde J., Ackermann T., Pfetzer N. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314821/.
  27. Dontu G., Abdallah W.M., Foley J.M. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003; 17(10): 1253-70.
  28. Reynolds B.A., Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255: 1707-10.
  29. Reya T., Morrison S.J., Clarke M.F. et al. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11.
  30. Marx J. Mutant stem cells may seed cancer. Science 2003; 301: 1308-10.
  31. Pardal R., Clarke M.F., Morrison S.J. Applying the principles of stemcell biology to cancer. Nat. Rev. Cancer 2003; 3(12): 895-902.
  32. Al-Hajj M., Wicha M.S., Benito-Hernandez A. et al. Prospective identification of tumorigenic breast cancer cells. PNAS USA 2003; 100(7): 3983-8.
  33. Grimshaw M.J., Cooper L., Papazisis K. et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells, https://breast-cancerresearch.biomedcentral.com/ articles/10.1186/bcr2106.
  34. Ponti D., Costa A., Zaffaroni N. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005; 65(13): 5506-11.
  35. Manuel Iglesias J., Beloqui I., Garcia-Garcia F. et al. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790762/.
  36. Засадкевич Ю.М., Бриллиант А.А., Сазонов С.В. Роль кадгеринов в норме и при развитии рака молочной железы. Архив патологии 2015; 77(3): 57-64.
  37. Засадкевич Ю.М., Сазонов С.В. Роль молекулы клеточной адгезии E-кадгерина в онтогенезе человека в норме и патологии. Морфология 2014; 146(5): 78-82.
  38. Бриллиант Ю.М., Бриллиант А.А., Сазонов С.В. Эпителиальные кадгерины и ассоциированные с ними молекулы при инвазивном дольковом раке молочной железы. Архив патологии 2017; 79(1): 12-8.
  39. Lombardo Y., de Giorgio A., Coombes C.R. et al. Mammosphere formation assay from human breast cancer tissues and cell lines, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401367/.
  40. Simian M., Bissell M.J. Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. 2017; 216: 31-40.
  41. Charlotte R., Frederic H., Richard R. et al. Breast tumour organoids: promising models for the genomic and functional characterisation of breast cancer. Biochem. Soc. Trans. 2003; 47(1): 109-17.
  42. Ootani A., Li X., Sangiorgi E. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 2009; 15(6): 701-6.
  43. Sato T., Vries R.G., Snippert H.J. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459: 262-5.
  44. Sachs N., de Ligt J., Kopper O. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018; 172: 373-86
  45. Xu X., Farach-Carson M.C., Jia X. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol. Adv. 2014; 32(7): 1256-68.
  46. Naipal K.A.T., Verkaik N.S., Sanchez H. et al. Tumor slice culture system to assess drug response of primary breast cancer, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748539/.
  47. Lakhani S.R. W.H.O. Classification of Tumours of the Breast. Fourth Edition. International Agency for Research on Cancer 2012; 4: 8-10.
  48. Lee B.H. Commentary on: «Comprehensive molecular characterization of papillary renal-cell carcinoma» Cancer Genome Atlas Research Network. N. Engl. J. Med. 2016; 374(2): 135-45.
  49. Sazonov S.V., Konyshev K.V. HER2/neu in local metastases and primary focus of breast cancer. European Journal of Patology (Virchows Archiv) 2015; 467(S1): 55.
  50. Konyshev K., Sazonov S. Changes of estrogen receptor, progesterone receptor and Her2/neu statuses of local metastases compared with primary tumor in breast cancer. European Journal of Patology (Virchows Archiv) 2019; 475(1): 84-5.
  51. Ciriello G., Gatza M.L., Beck A.H. et al. Research Network Comprehensive molecular portraits of invasive lobular breast cancer. Cell 201 5; 163: 506-19.
  52. Nik-Zainal S., Davies H., Staaf J. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 2016; 534: 47-54.
  53. Сазонов С.В. Обеспечение качества молекулярно-биологических исследований при диагностике рака молочной железы. Екатеринбург, Россия: ВУМАН; 2018.
  54. Perou C.M., Sorlie T., Eisen M.B. et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
  55. Prat A., Perou C.M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 2011; 5(1): 5-23.
  56. Rivenbark A.G., O’Connor S.M., Coleman W.B. Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. Am.J. Pathol. 2013; 183: 1113-24.
  57. Marusyk A., Almendro V., Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 2012; 12(5): 323-34.
  58. Nishikata T., Ishikawa M., Matsuyama T. et al. Primary culture of breast cancer: a model system for epithelial-mesenchymal transition and cancer stem cells. Anticancer Res. 2013; 33(7): 2867-73.
  59. Семиглазов В.Ф., Палтуев Р.М., Манихас А.Г. и др. Клинические рекомендации РООМ по диагностике и лечению рака молочной железы. Клинические рекомендации РООМ. Санкт-Петербург: Издательский дом «АБВ-пресс»; 201 5.
  60. Франк Г.А., Андреева Ю.Ю., Виноградов И.Ю. и др. 10 лет тестирования HER2-статуса рака молочной железы в России. Архив патологии 2012; 74(5): 3-6.
  61. Сазонов С.В., Бриллиант А.А., Бриллиант Ю.М. Связь состояния пролиферативных процессов и особенностей рецепторного аппарата опухолевых клеток карциномы молочной железы. Гены и Клетки 2017; 12(4): 76-81.
  62. Сазонов С.В., Конышев К.В., Казанцева Н.В. и др. Гистологические и иммуногистохимические проявления эпителио-мезенхи-мального перехода при тройном негативном раке молочной железы. Вестник Уральской медицинской академической науки 2016; 2(57): 53-63.
  63. Сазонов С.В., Казанцева Н.В., Конышев К.В. и др. Проявления эпителиально-мезенхимального перехода при трижды негативном раке молочной железы. Успехи молекулярной онкологии 2018; 5(4):
  64. Brilliant A.A., Brillant Yu.M., Sazonov S.V. Characteristics of the relation between epithelial-mesenchymal transition and proliferative activity in breast carcinomas. European Journal of Cancer 2013; 49(2): 216.
  65. Kazantseva N., Brilliant F., Brilliant Y. et al. The level of proliferation in cases of breast cancer with high and low maintenance of cancer stem cells. European Journal of Pathology (Virchows Archiv) 2018; 473(1): 205.
  66. Demidov S., Sazonov S., Brilliant A. et al. Expression of WNT, Hedgehog and NOTCH signaling pathways in HER-2 overexpressed and triple negative subtypes of breast cancer with high and low content of cancer stem cells. Annals of Oncology 2020; 31(2): 30.
  67. Brilliant A., Brilliant Y., Sazonov S. WNT, Hedgehog and Notch signalling pathways in triple negative breast cancer with high and low content of cancer stem cells. Annals of Oncology 2019; 30(3): 40.
  68. Бриллиант А.А., Бриллиант Ю.М., Сазонов С.В. и др. ALDH1A1 позитивные клетки опухоли и их влияние на сигнальные пути NF-KB, PI3K PTEN, NOTCH, WNT, Hedgehog в случаях тройного негативного и гормон рецептор негативного HER2 позитивного иммуногистохимических подтипов инвазивных карцином молочной железы. Вестник уральской медицинской академической науки 2019; 16(1): 41-9.
  69. Сазонов С.В., Бриллиант А.А., Фадеев Ф.А. и др. Первый опыт культивирования клеток рака молочной железы. Вестник Уральской медицинской академической науки 2018; 15(6): 860-7.
  70. Minafra L., Norata R., Bravata V. et al. Unmasking epithelial-mesenchymal transition in a breast cancer primary culture: a study report. BMC Res. Notes 2012; 5: 343.
  71. Drews-Elger K., Brinkman J.A., Miller P. et al. Primary breast tumor-derived cellular models: characterization of tumorigenic, metastatic, and cancer-associated fibroblasts in dissociated tumor (DT) cultures. Breast Cancer Res. Treat. 2014; 144(3): 503-17.
  72. Nushtaeva A.A., Stepanov G.A., Semenov D.V. et al. Characterization of primary normal and malignant breast cancer cell and their response to chemotherapy and immunostimulatory agents. BMC Cancer 2018; 18(1): 728.
  73. Suchy S.L., Hancher L.M., Wang D. et al. Chemoresponse assay for evaluating response to sunitinib in primary cultures of breast cancer. Cancer Biol. Ther. 2011; 11(12): 1059-64.
  74. Nakanishi T., Chumsri S., Khakpour N. et al. Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by hEr2 expression and signalling. Br.J. Cancer 2010; 102(5): 815-26.
  75. Halfter K., Hoffmann O., Ditsch N. et al. Testing chemotherapy efficacy in HER2 negative breast cancer using patient-derived spheroids. J. Transl Med. 2016; 14(1): 112.
  76. Imamura Y., Mukohara T., Shimono Y. et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 2015; 33(4): 1837-43.
  77. Fang Y., Eglen R.M. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov. 2017; 22(5): 456-72.
  78. Hoarau-Vechot J., Rafii A., Touboul C. et al. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? Int. J. Mol. Sci. 2018; 19(1): 181.
  79. Han C., Takayama S., Park J. Formation and manipulation of cell spheroids using a density adjusted PEG/DEX aqueous two phase system. Sci. Rep. 2015; 5: 11891.
  80. van der Kuip H., Murdter T.E., Sonnenberg M. et al. Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment. BMC Cancer 2006; 6: 86.
  81. Шуканова Н.А., Мартынова М.А., Козловская Н.А. и др. Влияние цитостатиков на функциональное состояние клеток рака молочной железы в первичной культуре. Онкологический журнал 2011; 5(2): 62-4.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies