The role of transposons in the structural evolution of eukaryotic genomes



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We presented evidence of the role of transposons in the occurrence of centromeric repeats in plants and animals. During evolution, transposable elements are retained as part of centromeres and participate in interaction with kinetochore. Moreover, the centromere protein CENP-B, telomerase and telomeres were derived from transposons. For the functioning of centromeres, the necessary role of RNA interference was proved. Non-coding RNAs that are processed from centromere transcripts are involved in this process. We assume that this property was acquired due to the protective mechanisms of the hosts against transposons, which have been successfully used for the regulation of genomes. As a result, the universal mechanism of chromosomes during mitosis was formed for all eukaryotes, since transposons play a global role in the structural and functional regulation of genomes. Evolutionary kinship of transposons with viruses, which are characterized by interactions with microtubule tubulin, is proved. Moreover, bacteriophages encode tubulin-like PhuZ protein. In evolution, spliceosomal introns, epigenetic and transcription factors and their binding sites, non-coding RNAs and many protein-coding genes have evolved from transposons. These facts indicate the evolutionary formation of a complex system of regulation of cell functions involving transposons and the role of transposons in the structural evolution of genomes.

Full Text

Restricted Access

About the authors

R. N Mustafin

Bashkir State Medical University

Email: ruji79@mail.ru

References

  1. Mestrovic N., Mravinac B., Pavlek M. et al. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 2015; 23: 583-96.
  2. Kulski J.K., Anzai T., Inoko H. ERVK9, transposons and the evolution of MHC class I duplicons within the alpha-block of the human and chimpanzee. Cytogenet. Genome Res. 2005; 110: 181-92.
  3. Wang S., Zhang L., Meyer E. et al. Characterization of a group of MITEs with unusual features from two coral genomes. PLoS ONE 2010; 5: e10700.
  4. Sharma A., Wolfgruber T.K., Presting G.G. Tandem repeats derived from centromeric retrotransposons. BMC Genomics 2013; 14: 142.
  5. McGurk M.P., Barbash D.A. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res. 2018; 28: 714-25.
  6. Biscotti M.A., Canapa A., Forconi M. et al. Transcription of tandemly repetitive DNA: functional roles. Chromosome Res. 2015; 23: 463-77.
  7. Arkhipova I.R., Yushenova I.A., Rodriguez F. Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres. Mob. Biol. Evol. 2017; 34: 2245-57.
  8. Kopera H.C., Moldovan J.B., Morrish T.A. et al. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. PNAS USA 2011; 108: 20345-50.
  9. Wong L.H., Choo K.H. Evolutionary dynamics of transposable elements at the centromere. Trends Genet. 2004; 20: 611-6.
  10. Hara T., Hirai Y., Jahan I. et al. Tandem repeat sequences evolutionary related to SVA-type retrotransposons are expanded in centromere region of the western hoolock gibbon, a small ape. J. Hum. Genet. 2012; 57: 760-5.
  11. Han J., Masonbrink R.E., Shan W. et al. Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Plant J. 2016; 88: 992-5.
  12. Xiong W., Dooner H.K., Du C. Rolling-circle amplification of centro-mericHelitrons in plant genomes. The Plant Journal 2016; 88: 1038-45.
  13. de Sotero-Caio C.G., Cabral-de-Mello D.C., Calixto M.D.S. et al. Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats. Chromosome Res. 2017; 25: 313-25.
  14. Yadav V., Sun S., Billmyre R.B. et al. RNAi is a critical determinant of centromere evolution in closely related fungi. PNAS USA 2018; 115: 3108-13.
  15. Lopez-Flores I., de la Herran R., Garrido-Ramos M.A. et al. The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 2004; 339: 181-8.
  16. Volff J.N. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 2006; 28: 913-22.
  17. de Jong J., Wessels L.F.A., van Lohuizen M. et al. Applications of DNA integrating elements: Facing the bias bully. Mobile Genetic Elements 2015; 4: 1-6.
  18. Kapitonov V.V., Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 2008; 9: 411-2.
  19. Galej W.P., Oubridge C., Newman A.J. et al. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 2013; 493: 638-43.
  20. Nozu K., Lijima K., Igarashi T. et al. A birth of bipartite exon by intragenic deletion. Mol. Genet. Genomic Med. 2017; 5: 287-94.
  21. Mersch B., Sela N., Ast G. et al. SERpredict: detection of tissue-or tumor-specific isoforms genetated through exonization of transposable elements. BmC Genet. 2007; 8: 78.
  22. Tan S., Cardoso-Moreira M., Shi W. et al. LTR-mediated retroposi-tion as a mechanism of RNA-based duplication in metazoans. Genome Res. 2016; 26: 1663-75.
  23. Hadjiargyrou M., Delihas N. The Intertwining of Transposable Elements and Non-Coding RNAs.Int. J. Mol. Sci. 2013; 14: 13307-28.
  24. Jiang F., Zhang J., Liu Q. et al. Long-read direct RNA sequencing by 5’-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol. 2019; 16: 950-9.
  25. Sinzelle L., Izsvak Z., Ivics Z. Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cell. Mol. Life Sci. 2009; 66: 1073-93.
  26. Shaheen M., Williamson E., Nickoloff J. et al. Metnase/SETMAR: a domesticated primate transposase that enhances DNA repair, replication, and decatenation. Genetica 2010; 138: 559-66.
  27. Lin R., Ding L., Casola C. et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Scienсe 2007; 318: 1302-5.
  28. Feschotte C. The contribution of transposable elements to the evolution of regulatory networks. Nat. Rev. Genet. 2008; 9: 397-405.
  29. Gim J., Ha H., Ahn K. et al. Genome-Wide Identification and Classification of microRNAs derived from repetitive elements. Genomic. Inform. 2014; 12: 261-7.
  30. Ozata D.M., Gainetdinov I., Zoch A. et al. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 2019; 20: 89-108.
  31. Barry G. Small RNAs and Transposable Elements Are Key Components in the Control of Adaptive Evolution in Eukaryotes. Bioessays 2018; 40: e1800070.
  32. Wei G., Qin S., Li W. et al. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans.Comput. Biol. Bioinform. 2016; 13: 1155-60.
  33. Pedro D.L.F., Lorenzetti A.P.R., Domingues D.S. et al. PlaNC-TE: a comprehensive knowledgebase of non-coding RNAs and transposable elements in plants. Database (Oxford) 2018; 2018: 1-7.
  34. McCue A.D., Slotkin R.K. Transposable element small RNAs as regulators of gene expression. Trends Genet. 2012; 28: 616-23.
  35. Samantarrai D., Dash S., Chhetri B. et al. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol. Cancer Res. 2013; 11: 315-28.
  36. Xu C., Tian J., Mo B. SiRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell 2013; 4: 656-63.
  37. Schrader L., Schmitz J. The impact of transposable elements in adaptive evolution. Mol. Ecol. 2018; 28: 1537-49.
  38. Slijepcevic P. Mechanisms of the Evolutionary Chromosome Plasticity: Integrating the “Centromere-from-Telomere” Hypothesis with Telomere Length Regulation. Cytogenet. Genome Res. 2016; 148: 268-78.
  39. Garavis M., Gonzalez C., Villasante A. On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution. Genome Biol. Evol. 2013; 5: 1142-50.
  40. Padeken J., Zeller P., Gasser S.M. Repeat DNA in genome organization and stability. Curr. Opin. Genet. Dev. 2015; 31: 12-9.
  41. Casacuberta E. Drosophila: Retrotransposons Making up Telomeres. Viruses 2017; 9: pii: E192.
  42. Mikkelsen T.S., Ku M., Jaffe D.B. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007; 448: 553-60.
  43. Richards E.J., Goodman H.M., Ausubel F.M. The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acids Res. 1991; 19: 3351-7.
  44. Rosen M., Castillejo-Lopez C., Edstrom J.E. Telomere terminating with centromere-specific repeats is closely associated with a transposon derived gene in Chironomus pallidivittatus. Chromosoma 2002; 110: 532-41.
  45. Villasante A., Abad J.P., Mendez-Logo M. Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. PNAS USA 2007; 104: 10542-7.
  46. Bolzan A.D.Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. 2017; 3: 51-65.
  47. Jankowska M., Fuchs J., Klocke E. et al. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 2015; 124: 519-28.
  48. Klutstein M., Fennell A., Farnandez-Alvarez A. et al. The telomere bouquet regulates meiotic centromere assembly. Nat. Cell Biol. 2015; 17: 458-69.
  49. Lingner J., Hughes T.R., Shevchenko A. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 1997; 276: 561-7.
  50. Malik H.S., Burke W.D., Eickbush T.H. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 1999; 16: 793-5.
  51. Martinez-Guitarte J.L., de la Fuente M., Morcillo G. Telomeric tran-scriptome from Chironomus riparius (Diptera), a species with noncanonical telomeres. Insect Mol. Biol. 2014; 23: 367-80.
  52. Mason J.M., Randall T.A., Capkova-Frydrychova R. Telomerase lost. Chromosoma 2016; 125: 65-73.
  53. Radion E., Morgunova V., Ryazansky S. et al. Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline. Epigenetics Chromatin 2018; 11: 40.
  54. Morrish T.A., Garcia-Perez J.L., Stamato T.D. et al. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 2007; 446: 208-12.
  55. Guo X., Su H., Shi Q. et al. De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids. PLoS Genet. 2016; 12: e1005997.
  56. Melters D.P., Bradnam K.R., Young H.A. et al.Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013; 14: R10.
  57. Kanizay L., Dawe R.K. Centromeres: long intergenic spaces with adaptive features. Funct.Integr. Genomics 2009; 9: 287-92.
  58. Hayden K.E., Willard H.F.Composition and organization of active centromere sequences in complex genomes. BMC Genomics 2012; 13: 324.
  59. Carone D.M., Zhang C., Hall L.E. et al. Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading. Chromosome Res. 2013; 21: 49-62.
  60. Halverson D., Baum M., Stryker J. et al. A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B.J. Cell Biol. 1997; 136: 487-500.
  61. Sharma A., Presting G.G. Evolution of centromeric retrotransposons in grasses. Genome Biol. Evol. 2014; 6: 1335-52.
  62. Wolfgruber T.K., Sharma A., Schneider K.L. et al. Maize centromere structure and evolution: Sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet. 2009; 5: 13-6.
  63. Li B., Choulet F., Heng Y. et al. Wheat centromeric retrotrans-posons: the new ones take a major role in centromeric structure. Plant J. 2013; 73: 952-65.
  64. Kapitonov V.V., Jurka J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 1999; 107: 27-37.
  65. Kim K.D., Tanizawa H., Iwasaki O. et al. Centromeric motion facilitates the mobility of interphase genomic regions in fission yeast. J. Cell Sci. 2013; 126: 5271-83.
  66. Cheng Z.J., Murata M. A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 2008; 164: 665-72.
  67. Heikkinen E., Launonen V., Muller E. et al. The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements. J. Mol. Evol. 1995; 41: 604-14.
  68. Klein S.J., O’Neill R.J. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res. 2018; 26: 5-23.
  69. Zhong C.X., Marshall J.B., Topp C. et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 2002; 14: 2825-36.
  70. Allshire R.C. RNA interference, heterochromatin, and centromere function. Cold Spring Harb. Symp. Quant. Biol. 2004; 69: 389-95.
  71. Smit A.F., Riggs A.D. Tiggers and DNA Transposon Fossils in the Human Genome. PNAS USA 1996; 93: 1443-8.
  72. Kipling D., Warburton P.E. Centromeres, CENP-B and Tigger too. Trends Genet. 1997; 13: 141-5.
  73. Daulny A., Mejia-Ramirez E., Reina O. et al. The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements. Biochim. Biophys. Acta 2016; 1859: 1314-21.
  74. Koonin E.V., Krupovic M. Polintons, virophages and transpovirons: a tangled web linking viruses, transposons and immunity. Curr. Opin. Virol. 2017; 25: 7-15.
  75. Chaikeeratisak V., Nguyen K., Egan M.E. et al. The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. Cell Rep. 2017; 20: 1563-71.
  76. Ferreira L.T., Figueiredo A.C., Orr B. et al. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol. 2019; 144: 33-74.
  77. Chiang C., Gack M.U. Post-translational Control of Intracellular Pathogen Sensing Pathways. Trends Immunol. 2017; 38: 39-52.
  78. Affolter M., Rindisbacher L., Braun R. The tubulin gene cluster of Try-panosomabrucei starts with an intact beta-gene and ends with a truncated beta-gene interrupted by a retrotransposon-like sequence. Gene 1989; 80: 177-83.
  79. Braun R., Behrens K., Glauser A. et al. Evolution of the retrotransposons TRS/ingi and of the tubulin genes in trypanosomes. Acta Trop. 1992; 52: 175-87.
  80. Zhang S., Jiang Y., Cheng Q. et al. Inclusion Body Fusion of Human Parainfluenza Virus Type 3 Regulated by Acetylated a-Tubulin Enhances Viral Replication. J. Virol. 2017; 91: pii: e01802-16.
  81. Zhang M., Zakhartchouk A. Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with tubulin. Vet. Microbiol. 2017; 211: 51-7.
  82. Avdoshina V., Taraballi F., Dedoni S. et al. Identification of a binding site of the human immunodeficiency virus envelope protein gp120 to neuronal-specific tubulin. J. Neurochem. 2016; 137: 287-98.
  83. Iwamoto M., Cai D., Sugiyama M. et al. Functional association of cellular microtubules with viral capsid assembly supports efficient hepatitis B virus replication. Sci. Rep. 2017; 7: 10620.
  84. Nturibi E., Bhagwat A.R., Coburn S. et al.Intracellular Colocalization of Influenza Viral RNA and Rab11A Is Dependent upon Microtubule Filaments. J. Virol. 2017; 91: e01179-98.
  85. Carone D.M., Longo M.S., Ferreri G.C. et al. A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 2009; 118: 113-25.
  86. Dawe R.K. RNA interference, transposons, and the centromere. Plant Cell 2003; 15: 297-301.
  87. Neumann P., Yan H., Jiang J. The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 2007; 176: 749-61.
  88. O’Neill R.J., Carone D.M. The role of ncRNA in centromeres: a lesson from marsupials. Prog. Mol. Subcell. Biol. 2009; 48: 77-101.
  89. Topp C.N., Zhong C.X., Dawe R.K. Centromere-encoded RNAs are integral components of the maize kinetochore. PNAS USA 2004; 101: 15986-91.
  90. Cho J. Transposon-Derived Non-coding RNAs and Their Function in Plants. Front. Plant Sci. 2018; 9: 600.
  91. McClintock B. The significance of responses of the genome to challenge. Science 1984; 226: 792-801.
  92. Zhang J., Yu C., Krishnaswamy L. et al. Transposable elements as catalysts for chromosome rearrangements. Methods Mol. Biol. 2011; 701: 315-26.
  93. Schorn A.J., Gutbrod M.J., LeBlanc C. et al. LTR-Retrotransposon Control by tRNA-Derived Small RNAs. Cell 2017; 170: 61-71.
  94. Schorn A.J., Martienssen R. Tie-Break: Host and Retrotransposons Play tRNA. Trend. Cell Biol. 2018; 28: 793-806.
  95. Elliott T.A., Stage D.E., Crease T.J. et al. In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome. Mob. DNA 2013; 4: 20.
  96. Duan C.G., Wang X., Pan L. et al. A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res. 2017; 27: 226-40.
  97. Cordaux R., Udit S., Batzer M.A. et al. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. PNAS USA 2006; 103: 8101-6.
  98. Goerner-Potvin P., Bourque G.Computational tools to unmask transposable elements. Nat. Rev. Genet. 2018; 19: 688-704.
  99. Muszewska A., Hoffman-Sommer M., Grynberg M. LTR Retrotransposons in Fungi. PLoS One 2011; 6: е29425.
  100. Hu Y., Stenlid J., Elfstrand M. et al. Evolution of RNA interference proteins dicer and Argonaute in Basidomycota. Mycologia 2013; 105: 1489-98.
  101. Marzluff W.F., Koreski K.P. Birth and Death of Histone mRNAs. Trends Genet. 2017; 33: 745-59.
  102. Roehrdanz R., Heilmann L., Senechal P. et al. Histone and ribo-somal RNA repetitive gene clusters of the boll weevil are linked in a tandem array. Insect Mol. Biol. 2010; 19: 463-71.
  103. Piscor D., Parise-Maltempi P.P. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes. Genome 2016; 59: 167-72.
  104. Birchler J.A., Presting G.G. Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes Dev. 2012; 26: 638-40.
  105. Neumann P., Navratilova A., Koblizkova A. et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob. DNA 2011; 2: 4.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies