The role of artificial matrix components used for regenerative medicine in combating periprothetic infection

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Currently, there is an increasing demand for biocompatible materials that can be used for bone reconstruction. However, there is still no consensus regarding adequate bone replacement material. The materials traditionally used for reconstructive surgeries, and methods of making bone-replacing implants from them have various disadvantages. They do not fully satisfy the biological and biomechanical characteristics of living tissues. This leads to a clinical situation called "implant failure” and consists of a violation of its integrity, loosening, attachment of infectious agents, and inflammation development. There are severe socio-economic losses for the patient himself and the state. The problem of infectious complications after surgical operations with the use of bone replacement implants is quite acute. Periprosthetic infection is a modern professional challenge for surgeons and bioengineers. However, antibiotic therapy, which is the only treatment of choice for periprosthetic infection, is characterized by various side effects and becomes ineffective due to microbes' antibiotic resistance. In this regard, for the fight against periprosthetic infection, metal ions with antimicrobial potential (copper, zinc) are considered promising, which are not destroyed during sterilization of medical devices and have their own biological (regulatory) activity. The presented data indicate researchers' interest in studying the interaction of immunocompetent and mesenchymal stem cells with biomedical materials with antimicrobial potential.

Full Text

Restricted Access

About the authors

K. A Yurova

Immanuel Kant Baltic Federal University

O. G Khaziakhmatova

Immanuel Kant Baltic Federal University

V. V Malashchenko

Immanuel Kant Baltic Federal University

E. O Shunkin

Immanuel Kant Baltic Federal University

E. S Melashchenko

Immanuel Kant Baltic Federal University

I. K Norkin

Immanuel Kant Baltic Federal University

P. A Ivanov

Immanuel Kant Baltic Federal University

V. V Krivosheev

Immanuel Kant Baltic Federal University

I. A Khlusov

Immanuel Kant Baltic Federal University; Siberian State Medical University; National Research Tomsk Polytechnic University


L. S Litvinova

Immanuel Kant Baltic Federal University


  1. Salient I., Capella-Monsonis H., Procter P. et al. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front. Bioeng. Biotechnol. 8: 952. doi: 10.3389/fbioe.2020.00952.
  2. Deev R.V., Drobyshev A.Y., Bozo I.Y., Isaev A.A. Ordinary and Activated Bone Grafts: Applied Classification and the Main Features. BioMed Research International 2015; 365050,
  3. Blanchette K.A., Wenke J.C. Current therapies in treatment and prevention of fracture wound biofilms: why a multifaceted approach is essential for resolving persistent infections. Bone Jt. Infect. 2018; 3(2): 50-67.
  4. Pfang B.G., Garcia-Canete J., Garcia-Lasheras J. et al. Orthopedic implant-associated infection by multidrug resistant Enterobacteriaceae. J. Clin. Med. 2019; 8: 220.
  5. Liu J., Liu J., Attarilar S. et al. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front. Bioeng. Biotechnol. 2020; 8: 576969.
  6. Тихилов Р.М., Шубняков И.И., Коваленко А.Н. и др. Структура ранних ревизий эндопротезирования тазобедренного сустава. Травматология и ортопедия России 2014; 72(2): 5-13.
  7. Cho S.Y., Chung D.R. Infection prevention strategy in hospitals in the era of community-associated methicillin-resistant Staphylococcus aureus in the asia-pacific region: a review. Clin. Infect. Dis. 2017; 64(2): 82-90.
  8. Tschudin-Sutter S., Kuijper E.J., Durovic A. et al. Guidance document for prevention of Clostridium difficile infection in acute healthcare settings. Clin. Microbiol. Infect. 2018; 24(10): 1051-4.
  9. Wang P., Yuan Y., Xu K. et al. Biological applications of copper-containing materials. Bioact. Mater. 2020; 6(4): 916-27.
  10. Klein S., Nurjadi D., Eigenbrod T. et al. Evaluation of antibiotic resistance to orally administrable antibiotics in staphylococcal bone and joint infections in one of the largest university hospitals in Germany: Is there a role for fusidic acid? Int. J. Antimicrob. Agents 2016; 47: 155-7.
  11. Holleyman R.J., Deehan D.J., Walker L. et al. Staphylococcal resistance profiles in deep infection following primary hip and knee arthroplasty: a study using the NJR dataset. Arch. Orthop. Trauma Surg. 2019; 139: 1209-15.
  12. Seebach E., Kubatzky K.F. Chronic Implant-Related Bone Infections-Can Immune Modulation be a Therapeutic Strategy? Front. Immunol. 2019; 10: 1724.
  13. Campoccia D., Ravaioli S., Vivani R. et al. Antibacterial Properties of a Novel Zirconium Phosphate-Glycinediphosphonate Loaded with Either Zinc or Silver. Materials (Basel) 2019; 12(19): 3184.
  14. Clarke A.L., De Soir S., Jones J.D. The Safety and Efficacy of Phage Therapy for Bone and Joint Infections: A Systematic Review. Antibiotics (Basel) 2020; 9(11): 795.
  15. Alt V., Chen A.F. Antimicrobial coatings for orthopaedic implants - Ready for use? J. Bone Jt. Infect. 2020; 5(3): 125-7.
  16. Busscher H.J., van der Mei H.C., Subbiahdoss G. et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci. Transl. Med. 2012; 4: 153.
  17. Flemming H.C., Wingender J., Szewzyk U. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 2016; 14: 563-75.
  18. Pinto R.M., Soares F.A., Reis S. et al. Innovative Strategies Toward the Disassembly of the EPS Matrix in Bacterial Biofilms. Front. Microbiol. 2020; 11: 952.
  19. Muhammad M.H., Idris A.L., Fan X. et al. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol. 2020; 11: 928.
  20. Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010; 8: 623-33.
  21. Fong J.N.C., Yildiz F.H. Biofilm matrix proteins. Microbiol. Spectr. 2015; 3: 1-16.
  22. Beitelshees M., Hill A., Jones C.H. et al. Phenotypic variation during biofilm formation: implications for anti-biofilm therapeutic design. Materials 2018; 11: 1086.
  23. Aguila-Arcos S., Alvarez-Rodriguez I., Garaiyurrebaso O. et al. Biofilm-Forming Clinical Staphylococcus Isolates Harbor Horizontal Transfer and Antibiotic Resistance Genes. Front. Microbiol. 2017; 8: 2018.
  24. Beenken K.E., Dunman P.M., McAleese F. et al. Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 2004; 186: 4665-84.
  25. Pabst B., Pitts B., Lauchnor E. et al. Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates, Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression. Antimicrob. Agents Chemother. 2016; 60: 6294-301.
  26. Percival S.L., Hill K.E., Malic S. et al. Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair Regen. 2011; 19: 1-9.
  27. Lewis K. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb. Exp. Pharmacol. 2012; 211: 121-33.
  28. Xu Y., Dhaouadi Y., Stoodley P. et al. Sensing the unreachable: challenges and opportunities in biofilm detection. Curr. Opin. Biotechnol. 2020; 64: 79-84.
  29. Srivastava S., Bhargava A. Biofilms and human health. Biotechnol. Lett. 2016; 38: 1-22.
  30. Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002; 15: 167-93.
  31. Koo H., Allan R.N., Howlin R.P. et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017; 15: 740-55.
  32. Romano C.L., Scarponi S., Gallazzi E. et al. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J. Orthop. Surg. Res. 2015; 10: 157.
  33. Alt V. Antimicrobial coated implants in trauma and orthopaedics-A clinical review and risk-benefit analysis. Injury 2017; 48: 599-607.
  34. Arciola C.R., Campoccia D., Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018; 16: 397-409.
  35. Sanchez C.J., Hurtgen B.J., Lizcano A. et al. Biofilm and planktonic pneumococci demonstrate disparate immunoreactivity to human convalescent sera. BMC Microbiol. 2011; 11: 245.
  36. Zimmerli W., Sendi P. Pathogenesis of implant-associated infection: the role of the host. Semin. Immunopathol. 2011; 33: 295-306.
  37. Pinto R.M., Lopes-de-Campos D., Martins M.C.L. et al. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol. Rev. 2019; 43: 622-41.
  38. Cederlund A., Agerberth B., Bergman P. Specificity in killing pathogens is mediated by distinct repertoires of human neutrophil peptides. J. Innate Immun. 2010; 2: 508-21.
  39. Winterbourn C.C., Kettle A.J., Hampton M.B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 2016; 85: 765-92.
  40. Rochford E.T., Sabate Bresco M., Zeiter S. et al. Monitoring immune responses in a mouse model of fracture fixation with and without Staphylococcus aureus osteomyelitis. Bone 2016; 83: 82-92.
  41. Gries C.M., Kielian T. Staphylococcal biofilms and immune polarization during prosthetic joint infection. J.Am. Acad. Orthop. Surg. 2017; 25: 20-4.
  42. Windolf C.D., Meng W., Logters T.T. et al. Implant-associated localized osteitis in murine femur fracture by biofilm forming Staphylococcus aureus: a novel experimental model. J. Orthop. Res. 2013; 31: 2013-20.
  43. Coiffier G., Albert J.D., Arvieux C. et al. Optimizing combination rifampin therapy for staphylococcal osteoarticular infections. Joint Bone Spine 2013; 80: 11-7.
  44. Dosler S., Mataraci E. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 2013; 49: 53-8.
  45. Schuch R., Lee H.M., Schneider B.C. et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J. Infect. Dis. 2014; 209: 1469-78.
  46. Laverty G., McCloskey A.P., Gorman S.P. et al. Anti-biofilm activity of ultrashort cinnamic acid peptide derivatives against medical device-related pathogens. J. Pept. Sci. 2015; 21: 770-8.
  47. Dean S.N., Bishop B.M., van Hoek M.L. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 2011; 11: 114.
  48. Liu H., Zhao Y., Zhao D. et al. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical staphylococcus strains. Emerg. Microbes Infect. 2015; 4: e1.
  49. Ward C.L., Sanchez C.J. Jr., Pollot B.E. et al. Soluble factors from biofilms of wound pathogens modulate human bone marrow derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol. 2015; 15: 75.
  50. Alexander E.H., Rivera F.A., Marriott I. et al. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts. BMC Microbiol. 2003; 3: 5.
  51. Claro T., Widaa A., O'Seaghdha M. et al. Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS ONE 2011; 6: e18748.
  52. Widaa A., Claro T., Foster T.J. et al. Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS ONE 2012; 7: e40586.
  53. Ferraris S., Spriano S. Antibacterial titanium surfaces for medical implants. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016; 61: 965-78.
  54. Yeo I.S., Kim H.Y., Lim K.S. et al. Implant surface factors and bacterial adhesion: a review of the literature. Int. J. Artif. Organs 2012; 35: 762-72.
  55. Clauss M., Graf S., Gersbach S. et al. Material and biofilm load of K. wires in toe surgery: titanium versus stainless steel. Clin. Orthop. Relat. Res. 2013; 471: 2312-7.
  56. Carobolante J.P., Dias-Netipanyj C., Popat M. et al. Cell and Bacteria-Baterial Interactions on the Ti10Mo8Nb Alloy After Surface Modification. Materials Research 2018; 21(4): e20170508.
  57. Koseki H., Yonekura A., Shida T. et al. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study. PLoS One 2014; 9: e107588.
  58. Rotini R., Cavaciocchi M., Fabbri D. et al. Proximal humeral fracture fixation: multicenter study with carbon fiber peek plate. Musculoskelet. Surg. 2015; 99(1): 1-8.
  59. Schildhauer T.A., Robie B., Muhr G. et al. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J. Orthop. Trauma 2006; 20: 476-84.
  60. Schmidlin P.R., Muller P., Attin T. et al. Polyspecies biofilm formation on implant surfaces with different surface characteristics. J. Appl. Oral Sci. 2013; 21: 48-55.
  61. Burgers R., Gerlach T., Hahnel S. et al. In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin. Oral Implants Res. 2010; 21: 156-64.
  62. Teughels W., Van Assche N., Sliepen I. et al. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implants Res. 2006; 17(2): 68-81.
  63. Perez-Tanoira R., Aarnisalo A.A., Eklund K.K. et al. Prevention of Biomaterial Infection by Pre-Operative Incubation with Human Cells. Surg. Infect. (Larchmt) 2017; 18: 336-44.
  64. Schaer T.P., Stewart S., Hsu B.B. et al. Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials 2012; 33: 1245-54.
  65. Ma Y., Chen M., Jones J.E. et al. Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrob. Agents Chemother. 2012; 56: 5923-37.
  66. Chen A.F., Winkler H. Local Antimicrobial Treatment in Orthopaedic Surgery. J. Bone Jt. Infect. 2017; 2: 1-2.
  67. Peng Z.X., Tu B., Shen Y. et al. Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob. Agents Chemother. 2011; 55: 860-6.
  68. Paramasivan S., Jones D., Baker L. et al. The use of chitosan-dextran gel shows anti-inflammatory, antibiofilm, and antiproliferative properties in fibroblast cell culture. Am.J. Rhinol. Allergy 2014; 28: 361-5.
  69. Karlov A.V., Khlusov I.A., Pontak V.A. et al. Adhesion of Staphylococcus aureus to implants with different physicochemical characteristics. Bull. Exp. Biol. Med. 2002; 134(3): 277-80.
  70. Chen J., Wang F., Liu Q. et al. Antibacterial polymeric nanostructures for biomedical applications. Chem. Commun. 2014; 50: 14482-93.
  71. Xin Q., Shah H., Nawaz A. et al. Antibacterial carbon-based nanomaterials. Adv. Mater. 2019; 31: 1-15.
  72. Xu J.W., Yao K., Xu Z.K. Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale 2019; 11: 8680-91.
  73. Liu W., Su P., Gonzales A. et al. Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling. Int. J. Nanomed. 2015; 10: 1997-2019.
  74. Gunputh U.F., Le H., Handy R.D. et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants. Mater. Sci. Eng. 2018; 91: 638-44.
  75. Cheng Y.F., Zhang J.Y., Wang Y.B. et al. Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application. Mater. Sci. Eng. 2019; 98: 649-56.
  76. Vimbela G.V., Ngo S.M., Fraze C. et al. Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomed. 2017; 12: 3941-65.
  77. Kheiri S., Liu X., Thompson M. Nanoparticles at biointerfaces: antibacterial activity and nanotoxicology. Colloids Surfaces B: Biointerfaces 2019; 184: 110550.
  78. Mi G., Shi D., Wang M. et al. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces. Adv. Healthc. Mater. 2018; 7: 1-23.
  79. Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013; 34: 8533-54.
  80. Hasan J., Crawford R.J., Ivanova E.P. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 2013; 31: 295-304.
  81. Shamsan G.A., Odde D.J. Emerging technologies in mechanotrans-duction research. Curr. Opin. Chem. Biol. 2019; 53: 125-30.
  82. Bandara C.D., Singh S., Afara I.O. et al. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 2017; 9: 6746-60.
  83. Linklater D.P., Juodkazis S., Rubanov S. et al. Comment on “bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli.” ACS Appl. Mater. Interfaces 2017; 9: 29387-93.
  84. Watson G.S., Green D.W., Schwarzkopf L. et al. A gecko skin micro/nano structure - A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater. 2015; 21: 109-22.
  85. Truong V.K., Geeganagamage N.M., Baulin V.A. et al. The susceptibility of Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 cells to the bactericidal action of nanostructured Calopteryx haemorrhoidalis damselfly wing surfaces. Appl. Microbiol. Biotechnol. 2017; 101: 4683-90.
  86. Cao Y., Su B., Chinnaraj al. Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation. Sci. Rep. 2018; 8: 1071.
  87. Ivanova E.P., Hasan J., Webb H.K. et al. Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings. Small (Weinheim an der Bergstrasse, Germany) 2012; 8: 2489-94.
  88. Diu T., Faruqui N., Sjostrom T. et al. Cicada-inspired cell-instructive nanopatterned arrays. Sci. Rep. 2014; 4: 7122.
  89. Kelleher S.M., Habimana O., Lawler J. et al. Cicada wing surface topography: an investigation into the bactericidal properties of nanostruc-tural features. ACS Appl. Mater. Interfaces 2016; 8: 14966-74.
  90. Ivanova E.P., Hasan J., Webb H.K. et al. Bactericidal activity of black silicon. Nat. Commun. 2013; 4: 2838.
  91. Nowlin K., Boseman A., Covell A. et al. Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces. J.R. Soc. Interface 2014; 12: 20140999.
  92. Xue F., Liu J., Guo L. et al. Theoretical study on the bactericidal nature of nanopatterned surfaces. J. Theor. Biol. 2015; 385: 1-7.
  93. Jager M., Jennissen H.P., Dittrich F. et al. Antimicrobial and Osseo-integration Properties of Nanostructured Titanium Orthopaedic Implants. Materials (Basel) 2017; 10(11): 1302.
  94. Nasajpour A., Mandla S., Shree S. et al. Nanostructured fibrous membranes with rose spike-like architecture. Nano Lett. 2017; 17: 6235-40.
  95. Uklejewski R., Rogala P., Winiecki M. et al. Biomimetic multispiked connecting Ti-alloy scaffold prototype for entirely-cementless resurfacing arthroplasty endoprostheses-exemplary results of implantation of the Ca-P surface-modified scaffold prototypes in animal model and osteoblast culture evaluation. Materials 2016; 9: 532.
  96. Modaresifar K., Azizian S., Ganjian M. et al. Bactericidal effects of nanopatterns: a systematic review. Acta Biomater. 2019; 83: 29-36.
  97. Thomsen H., Benkovics G., Fenyvesi E. et al. Delivery of cyclodextrin polymers to bacterial biofilms - an exploratory study using rhodamine labelled cyclodextrins and multiphoton microscopy. Int. J. Pharm. 2017; 531: 650-7.
  98. Wang Z., Bai H., Lu C. et al. Light controllable chitosan micelles with ROS generation and essential oil release for the treatment of bacterial biofilm. Carbohydr. Polym. 2019; 205: 533-9.
  99. Su Y., Zhao L., Meng F. et al. Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. Mater. Sci. Eng. C. Mater. Biol. Appl. 2018; 93: 921-30.
  100. Liu Y., Busscher H.J., Zhao B. et al. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano 2016; 10: 4779-89.
  101. Flemming H.C. Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions. In: Flemming H.C., Wingender J., Szewzyk U., editors. Biofilm highlights. Switzerland: Springer; 2011. p. 81-109.
  102. Tan Y., Ma S., Leonhard M. et al. Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohydr. Polym. 2018; 200: 35-42.
  103. Baelo A., Levato R., Julian E. et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J. Control. Release 2015; 209: 150-8.
  104. Rahim M.I., Ullah S., Mueller P.P. Advances and Challenges of Biodegradable Implant Materials with a Focus on Magnesium-Alloys and Bacterial Infections. Metals 2018; 8: 532.
  105. Yamamoto A., Honma R., Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. Mater. Res. 1998; 39(2): 331-40.
  106. Gu X., Zheng Y., Cheng Y. et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009; 30(4): 484-98.
  107. Park H.J., Kim J.Y., Kim J. et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009; 43: 1027-32.
  108. Tang S., Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv. Healthc. Mater. 2018; 7: 1701503.
  109. Ramalingam B., Parandhaman T., Das S.K. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016; 8: 4963-76.
  110. Su H.L., Chou C.C., Hung D.J. et al. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 2009; 30: 5979-87.
  111. Liu J., Hurt R.H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010; 44: 2169-75.
  112. Khalandi B., Asadi N., Milani M. et al. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res. 2017; 67: 70-6.
  113. Seong M., Lee D.G. Silver nanoparticles against Salmonella enterica Serotype typhimurium: role of inner membrane dysfunction. Curr. Microbiol. 2017; 74: 661-70.
  114. Molleman B., Hiemstra T. Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir: the ACS journal of surfaces and colloids 2015; 31: 13361-72.
  115. Deshmukh S.P., Mullani S.B., Koli V.B. et al. Ag Nanoparticles Connected to the Surface of TiO2 Electrostatically for Antibacterial Photoinactivation Studies. Photochem. Photobiol. 2018; 94: 1249-62.
  116. Subramaniyan S.B., Megarajan S., Vijayakumar S. et al. Evaluation of the toxicities of silver and silver sulfide nanoparticles against Gram-positive and Gram-negative bacteria. IET Nanobiotechnol. 2019; 13: 326-31.
  117. Yang Z., Ma C., Wang W. et al. Fabrication of Cu2O-Ag nanocomposites with enhanced durability and bactericidal activity. J. Colloid Interface Sci. 2019; 557: 156-67.
  118. Zhu C., Lv Y., Qian C. et al. Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing. Int. J. Nanomed. 2018; 13: 1881-98.
  119. Lai Y., Dong L., Zhou H. et al. Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Ag+ in vivo. Sci. Total Environ. 2020; 723: 138050.
  120. Attarilar S., Yang J., Ebrahimi M. et al. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front. Bioeng. Biotechnol. 2020; 8: 822.
  121. Rizzello L., Pompa P.P. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 2014; 43: 1501-18.
  122. Foldbjerg R., Jiang X., Miclu§ T. et al. Silver nanoparticles - Wolves in sheep’s clothing? Toxicol. Res. 2015; 4: 563-75.
  123. Grandi S., Cassinelli V., Bini M. et al. Bone Reconstruction: Au Nanocomposite Bioglasses with Antibacterial Properties. Int. J. Artif. Organs 2011; 34: 920-8.
  124. Samanta A., Podder S., Kumarasamy M. et al. Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019; 103: 109734.
  125. Yang T., Wang D., Liu X. Assembled gold nanorods for the pho-tothermal killing of bacteria. Colloids Surfaces B: Biointerfaces 2019; 173: 833-41.
  126. Li X., Robinson S.M., Gupta A. et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014; 8: 10682-6.
  127. Boda S.K., Broda J., Schiefer F. et al. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci. Small 2015; 11: 3183-93.
  128. Dizaj S.M., Lotfipour F., Barzegar-Jalali M. et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014; 44: 278-84.
  129. Li J., Li Q., Ma X. et al. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int. J. Nanomed. 2016; 11: 5931-44.
  130. Xia K., Zhang L., Huang Y. et al. Preparation of gold nanorods and their applications in photothermal therapy. J. Nanosci. Nanotechnol. 2015; 15: 63-73.
  131. Giri K., Yepes L.R., Duncan B. et al. Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Adv. 2015; 5: 105551-9.
  132. Richter K., Thomas N., Zhang G. et al. Deferiprone and Gallium-Protoporphyrin Have the Capacity to Potentiate the Activity of Antibiotics in Staphylococcus aureus Small Colony Variants. Front. Cell. Infect. Microbiol. 2017; 7: 280.
  133. Cochis A., Azzimonti B., Della Valle C. et al. The effect of silver or gallium doped titanium against the multidrug resistant acinetobacter baumannii. Biomaterials 2016; 80: 80-95.
  134. Yamaguchi S., Nath S., Sugawara Y. et al. Two-in-one biointer-faces-antimicrobial and bioactive nanoporous gallium titanate layers for titanium implants. Nanomaterials 2017; 7: 229.
  135. Wang W., Yeung K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017; 2(4): 224-47.
  136. Liu R., Ma Z., Kolawole S. et al. In vitro study on cytocompatibility and osteogenesis ability of Ti-Cu alloy. J. Mater. Sci. Mater. Med. 2019; 30: 75.
  137. Mou P., Peng H., Zhou L. et al. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Int. J. Nanomed. 2019; 14: 3331-43.
  138. Lv P., Zhu L., Yu Y. et al. Effect of NaOH concentration on antibacterial activities of Cu nanoparticles and the antibacterial mechanism. Mater. Sci. Eng. 2020; 110: 110669.
  139. Rauf A., Ye J., Zhang S. et al. Copper(ii)-based coordination polymer nanofibers as a highly effective antibacterial material with a synergistic mechanism. Dalt. Trans. 2019; 48: 17810-7.
  140. Arendsen L.P., Thakar R., Sultan A.H. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 2019; 32: e00125-18.
  141. Lewis O.F., Mubarak A.D., Nithya C. et al. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 2015; 31: 379-91.
  142. Sedelnikova M.B., Komarova E.G., Sharkeev Y.P. et al. Zn-, Cu-or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media. Surface and Coatings Technology 2019; 369: 52-68.
  143. McAuslan B.R., Gole G.A. Cellular and molecular mechanisms in angiogenesis. Trans. Ophthalmol. Soc. U.K. 1980; 100(3): 354-8.
  144. Rodriguez J.P., Rios S., Gonzalez M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J. Cell. Biochem. 2002; 85(1): 92-100.
  145. Ewald A., Kappel C., Vorndran E. et al. The effect of Cu(II)-loaded brushite scaffolds on growth and activity of osteoblastic cells. J. Biomed. Mater. Res. 2012; 100(9): 2392-400.
  146. Zhang E.L., Fu S., Wang R.X. et al. Role of Cu element in biomedical metal alloy design. Rare Met. 2019; 38(6): 476-94.
  147. Zhang J.M., Sun Y.H., Zhao Y. et al. Antibacterial ability and cyto-compatibility of Cu-incorporated Ni-Ti-O nanopores on NiTi alloy. Rare Met. 2019; 38(6): 552-60.
  148. Bai B., Zhang E., Liu J. et al. The anti-bacterial activity of titanium-copper sintered alloy against Porphyromonas gingivalis in vitro. Dent. Mater. J. 2016; 35(4): 659-67.
  149. Li M., Ma Z., Zhu Y. et al. Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus. Adv. Healthc. Mater. 2016; 5(5): 557-66.
  150. Guo S., Lu Y., Wu S. et al. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017; 72: 631-40.
  151. Ma Z., Li M., Liu R. et al. In vitro study on an antibacterial Ti-5Cu alloy for medical application. J. Mater. Sci. Mater. Med. 2016; 27(5): 91.
  152. Liu R., Memarzadeh K., Chang B. et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci. Rep. 2016; 6: 29985.
  153. Wu C., Zhou Y., Xu M. et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 2013; 34(2): 422-33.
  154. Bari A., Bloise N., Fiorilli S. et al. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater. 2017; 55: 493-504.
  155. Koohkan R., Hooshmand T., Tahriri M. et al. Synthesis, characterization and in vitro bioactivity of mesoporous copper silicate bioactive glasses. Ceram. Int. 2018; 44(2): 2390-9.
  156. Хлусов И.А., Митриченко Д.В., Просолов А.Б. и др. Краткий обзор биомедицинских свойств и применения магниевых сплавов для биоинженерии костной ткани. Бюллетень сибирской медицины 2019; 18(2): 274-86.
  157. Rahim M.I., Rohde M., Rais B. et al. Susceptibility of metallic magnesium implants to bacterial biofilm infections. J. Biomed. Mater. Res. A 2016; 104(6): 1489-99.
  158. Sudholz A.D., Kirkland N.T., Buchheit R.G. et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochem. Solid St. 2011; 14(2): 5-7.
  159. СанПиН Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения (с изменениями на 2 апреля 2018 года). М.: Минздрав России; 2002.
  160. Franchitto N., Gandia-Mailly P., Georges B. et al. Acute copper sulphate poisoning: a case report and literature review. Resuscitation 2008; 78(1): 92-6.
  161. Wang R., Qin G., Zhang E. Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application. J. Mater. Sci. Technol. 2020; 52: 127-35.
  162. Huster D. Wilson disease. Best Pract. Res. Clin. Gastroenterol. 2010; 24(5): 531-9.
  163. Zhang R., Liu X., Xiong Z. et al. The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis. Artif. Cells Nanomed. Biotechnol. 2018; 46: 1123-30.
  164. Chen B., You Y., Ma A. et al. Zn-Incorporated TiO2 nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages. Int. J. Nanomed. 2020; 15: 2095-118.
  165. Li J., Tan L., Liu X. et al. Balancing Bacteria-Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/ Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods. ACS Nano 2017; 11: 11250-63.
  166. Vojtech D. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011; 9(7): 3515-22.
  167. Bowen P.K. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater. 2013; 18(25): 2577-82.
  168. Hermavan H. Updates on the research and development of absorbable metals for biomedical applications. Prog. Biomater. 2018; 7: 93-110.
  169. Shearier E.R. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomater. Sci. Eng. 2016; 4(2): 634-42.
  170. Su Y., Cockerill I., Zheng Y. et al. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact. Mater. 2019; 4: 196-206.
  171. Komarova E.G., Sharkeev Y.P., Sedelnikova M.B. et al. Zn- or Cu-containing CaP-Based Coatings Formed by Micro-Arc Oxidation on Titanium and Ti-40Nb Alloy: Part II - Wettability and Biological Performance. Materials 2020; 13(19): 4366.
  172. Abraham N.M., Lamlertthon S., Fowler V.G. et al. Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B.J. Med. Microbiol. 2012; 61: 1062-70.
  173. Lin M.H., Shu J.C., Huang H.Y. et al. Involvement of iron in biofilm formation by Staphylococcus aureus. PLoS One 2012; 7: e34388.
  174. Harrison J.J., Turner R.J., Ceri H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ. Microbiol. 2005; 7: 981-94.
  175. Agarwal S., Curtin J., Duffy B. et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016; 68: 948-63.
  176. Liu C., Ren Z., Xu Y. et al. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning 2018; 2018: 9216314.
  177. Митриченко Д.В., Просолов А.Б., Хлусов И.А. и др. Интраме-дуллярный антимикробный фиксатор. Патент РФ на полезную модель №202062 от 28.01.21.
  178. Митриченко Д.В., Просолов А.Б., Хлусов И.А. и др. Интраме-дуллярный антимикробный фиксатор. Патент РФ на полезную модель №202063 от 28.01.21.

Copyright (c) 2021 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies