Analysis of approaches to increase the efficacy of cell therapy based on mesenchymal stromal cells



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review considers the main stages of isolating, processing and clinical use of human mesenchymal stromal cells (MSCs). They included: donor selection, selection of the source of MSCs, methods of isolation of cellular suspension from tissue, culturing in vitro for cell biomass propagation, priming of the resulting cell product, timing and ways of its clinical application, selection of the recipient of MSCs. The analysis of the stages of MSCs preparation and conditions for their use was carried out from the position of the influence on the final therapeutic effect of cell therapy in patients (or experimental animals - in preclinical studies). The optimal parameters of work with MSCs at each stage, the possibility to improve their quality / biological activity in order to increase their therapeutic efficacy were determined. The analysis and ways of avoiding the influence of adverse factors associated with the manufacturing and use of MSCs on the effectiveness of cell therapy in patients were given.

Full Text

Restricted Access

About the authors

M. P Potapnev

Republican Research & Production Center for Transfusiology & Medical Biotechnologies

Email: mpotapnev@yandex.by
Minsk, Belarus

References

  1. Zhuang W.Z., Lin Y.H., Su L.J.et al. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical application. J. Biomed. Sci. 2021; 28: 28.
  2. Miceli V., Bulati M., Iannolo G. et al. Therapeutic properties of mesenchymal stromal/stem cells: the need of cell priming for cell-free therapies in regenerative medicine.Int. J. Mol. Sci. 2021; 22: 763.
  3. Zhang Y., Ravikumar M., Ling L. et al. Age-related changes in the inflammatory status of human mesenchymal stem cells: implications for cell therapy. Stem Cell Reports 2021; 16: 694-707.
  4. Сорока Н.Ф., Потапнев М.П., Мартусевич Н.А. Клеточные технологии в лечении ревматических заболеваний. Научно-практ. ревматол. 2019; 57(6): 685-92
  5. Levy O., Kuai R., Siren E.M.J. et al. Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv. 2020; 6: eaba6884.
  6. Mebarki M., Abadie C., Larghero J. et al. Human umbilical cord-derived mesenchymal stem/stromal cells: a promising candidate for the development of advanced therapy medicinal products. Stem Cell Res. Ther. 2021; 12: 152.
  7. Lu H., Zhao X., Li Z. et al. From CAR-T to CAR-NK cells: a developing immunotherapy method for hematological malignancies. Front. Oncol. 2021; 11: 720501.
  8. Palucka K., Banchereau J. Cancer immunotherapy via dendritic cells. Nature Rev. Cancer 2012; 12: 265-77.
  9. Caplan A.I. Mesenchymal stem cells: time to change the name! Stem cells Transl. Med. 2017; 6: 1445-51.
  10. Mastrolia I., Foppiani M., Murgia A. et al. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem cells Transl. Med. 2019; 8: 1135-48.
  11. Qin Y., Jiang X., Yang Q. et al. The functions, methods, and mobility of mitochondrial transfer between cells. Front. Oncol. 2021; 11: 672781.
  12. Gregoire C., Lechanteur C., Briquet A. et al. Review article: mesenchymal stromal cell therapy for inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2017; 45: 205-21.
  13. Galipeau J., Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 2018; 22: 824-33.
  14. Elgaz S., Kuci Z., Kuci S. et al. Clinical use of mesenchymal stromal cells in the treatment of acute graft-versus- host disease. Transf. Med. Hemother. 2019; 46: 27-34.
  15. Nitkin C.R., Rajasingh J., Pisano C. et al. Stem cell therapy for preventing neonatal diseases in the 21th century: current understanding and challenges. Pediatr. Res. 2019; 87(2): 265-76.
  16. Kabat M., Bobkov I., Kumar S. et al. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in narrow dose range? Stem cells Transl. Med. 2020; 9: 17-27.
  17. Drela K., Stanaszek L., Nowakowski A. et al. Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes. Stem Cell Int. 2019; 2019: art. 7012692.
  18. Деев Р.В. Клеточная трансплантация в программе лечения COVID-19: пересадка стволовых стромальных (мезенхимальных) клеток. Гены и клетки 2020; XV(2): 10-9
  19. Потапнев М.П., Кравчук З.И., Филонюк В.А. Клеточные технологии лечения в медицинской практике организаций здравоохранения Республики Беларусь. Здравоохранение. Healthcare 2020; 11: 50-60.
  20. Yin J.Q., Zhu J., Ankrum J.A. Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomed. Engineer. 2019; 3: 90-104.
  21. Choudhery M.S., Badowski M., Muise A. et al. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J. Transl. Med. 2014; 12: 8.
  22. Tobita M., Tajima S., Mizuno H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness. Stem Cell Res. Ther. 2015; 6: 215.
  23. Fabian C., Naaldijk Y., Leovsky C. et al. Distribution pattern following systemic mesenchymal stem cell injection depends on the age of the recipient and neuronal health. Stem Cell Res. Ther. 2017; 8(1): 85.
  24. Kornicka K., Houston J., Marycz K. Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev. Reports 2018; 14: 337-45
  25. Fathollahi A., Gabalou N.B., Aslani S. Mesenchymal stem cell transplantation in systemic lupus erythematous, a mesenchymal stem cell disorder. Lupus 2018; 27(7): 1053-64.
  26. Zangi L., Margalit R., Reich-Zeliger S. et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 2009; 27(11): 2865-74.
  27. de Witte S.F.H., Luk F., Parraga J.M.S. et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 2018; 36: 602-15.
  28. Hsiao S.T.F., Asgari A., Lokmic Z. et al.Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells & Dev. 2012; 21(12): 2189-203.
  29. Arutyunyan I., Elchaninov A., Makarov A. et al. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem cell Int. 2016: 6901286.
  30. Seo Y., Kang M.J., Kim H.S. Strategies to potentiate paracrine therapeutic efficacy of mesenchymal stem cells in inflammatory diseases.Int. J. Mol. Sci. 2021; 22: 3397.
  31. Hoogduijn M.J., Lombardo E. Concise review: mesenchymal stromal cells anno 2019: dawn of the therapeutic era? Stem Cells Transl. Med. 2019; 8(11): 1126-34.
  32. Weiss A.R.R., Dahlke M.H. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front. Immunol. 2019; 10: 1191.
  33. Mareschi K., Rustichelli D., Calabrese R et al. Multipotent mesenchymal stromal cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use. Stem Cell Int. 2012; 2012: 920581.
  34. Игнатенко С.И., Космачева С.М., Потапнев М.П. и др. Рост-стимулирующая активность препаратов тромбоцитов в отношении мезенхимальных стволовых клеток in vitro. Вєсці/Извєстия НАНБ, сер. мед. наук. 2016; 1: 52-8.
  35. Strunk D., Lozano M., Marks D.C. et al.International forum on GMP-grade human platelet lysate for cell propagation: summary. Vox Sang. 2018; 113(1): 80-7.
  36. Smith J.R., Pfeifer K., Petry F. et al. Standardizing umbilical cord mesenchymal stromal cells for translation to clinical use: selection of GMP-compliant medium and simplified isolation method. Stem Cell Int. 2016; 2016: 6810980.
  37. Crespo-Diaz R., Behfar A., Butler G.W.et al. Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability. Cell Transpl. 2011; 20: 797-811.
  38. Космачева C.M., Данилкович Н.Н., Щепень А.В. и др. Влияние релизата (releasate) тромбоцитов на остеогенную дифференцировку мезенхимальных стволовых клеток костного мозга человека. Клет. техн. биол. мед. 2013; 4: 210-6.
  39. Abdelrazik H., Spaggiari G.M., Chiossone L. et al. Mesenchymal stem cells expanded in human lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function. Eur. J. Immunol. 2011; 41: 3281-90.
  40. Cornelio D.A., Tavares J.C.M., de A. Pimentel T.V.C. et al. Cytokinesis-block micronucleus assay adapted for analyzing genomic instability of human mesenchymal stem cells. Stem Cells & Dev. 2014; 23(8): 823-38.
  41. Kouroupis D., Sanjurjo-Rodriguez C., Jones E. et al. Mesenchymal stem cell functionalization for enhanced therapeutic applications. Tissue Eng. Part B Rev. 2019; 25(1): 55-77.
  42. Петинати Н.А., Капранов Н.М., Бигильдеев А.Е. и др. Изменение свойств мультипотентных мезенхимных стромальных клеток под действием интерферона-гамма. Бюл. эксп. биол. мед. 2017; 163(2): 194-9
  43. Шахбазов А.В., Гончарова Н.В., Космачева С.М. и др. Пластичность фенотипа и профиля экспрессии мезенхимальных стволовых клеток человека в нейрогенных условиях. Клет. техн. биол. мед. 2009; 2: 77-80
  44. Kim I., Lee S.K., Yoon J.I. et al. Fibrin glue improves the therapeutic effect of MSCs by sustaining survival and paracrine function. Tissue Eng. Part A 2013; 19: 2373-81.
  45. Lee B.C., Kang K.S. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res. Ther. 2020; 11: 397.
  46. Murphy K.C., Fang S.Y., Leach J.K. Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res. 2014; 357(1): 91-9.
  47. Bartosh T.J., Ylostalo J.H., Mohammadipoor A. et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their anti-inflammatory properties. PNAS USA 2010; 107(31): 13724-9.
  48. de Cassia Noronha N., Mizukami A., Caliari-Oliveira C. et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther. 2019; 10: 131.
  49. Engler A.J., Sen S., Sweeney H.L. et al. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126: 677-89.
  50. Ren G., Zhang L., Zhao X. et al. Mesenchymal stem cell- mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2: 141-50.
  51. Pourgholaminejad A., Aghdami N., Baharvand H. et al. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine 2016; 85: 51-60.
  52. Najar M., Krayem M., Merimi M. et al. Insights into inflammatory priming of mesenchymal stromal cells: functional biological impacts. Inflam. Res. 2018; 67(6): 467-77.
  53. Jaukovic A., Kukolj T., Obradovic H. et al. Inflammatory niche: mesenchymal stromal cell priming by soluble mediators. World J. Stem Cells 2020; 12(9): 922-37.
  54. Mishra V.K., Shih H.H., Parveen F.et al. Identifying the therapeutic significance of mesenchymal stem cells. Cells 2020; 9: 1145.
  55. Zhang Y., Ma L., Su Y. et al. Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res. 2019; 1725: 146432.
  56. Zhilai Z., Biling M., Sujun Q. et al. Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury. Brain Res. 2016; 1642: 426-35.
  57. Raicevic G., Najar M., Pieters K. et al. Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin. Tissue Eng. Part A 2012; 18(13-14): 1410-8.
  58. Hlebokazov F., Dakukina T., Ihnatsenko S. et al. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: An open label study. Adv. Med. Sci. 2017; 62(2): 273-9.
  59. Caplan H., Olson S.D., Kumar A. et al. Mesenchymal stromal cell therapeutic delivery: translational challenges to clinical application. Front. Immunol. 2019; 10: 1645.
  60. Hlebokazov F., Dakukina T., Potapnev M. et al. Clinical benefits of single vs repeated courses of mesenchymal stem cell therapy in epilepsy patients. Clin. Neurol. Neurosurg. 2021; 207: 106736.
  61. Tomaszewski M., Wong P. Stem cell therapy in the elderly with liver disease. OBM Hepatol. Gastroenterol. 2019; 3(1): 16.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies