Mitochondrial genome and aging of cardiomyocytes



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review presents data on the importance of mitochondrial DNA in aging of cardiomocytes. The mechanisms of accumulation of mutations in mtDNA and reduction of its content, as well as the consequences of these phenomena in cardiomyocytes are described. The similarity of the aging processes of cardiomyocytes and skeletal muscle cells and comparison with the aging processes occurring in mononuclear cells of peripheral blood is indicated. The death of cardiomyocytes and skeletal muscle cells leads to the destruction of mutant forms of mtDNA, as a result of which the content of mutant forms of mtDNA, constantly increasing with age, does not exceed 1-2% of the total number of mtDNA molecules. In addition, the death of cardiomyocytes and myocytes is accompanied by the release of CpG-motive cells mtDNA, which can cause local and general inflammation in old age. It is concluded, that in the treatment of elderly patients it is desirable to take into account the degree of aging ("biological age”) of their myocardial and their presence of chronic myocarditis, for which appropriate diagnostic methods should be developed.

Full Text

Restricted Access

About the authors

S. N Kolyubaeva

S.M. Kirov Military Medical Academy

Email: ksnwma@mail.ru
Saint-Petersburg, Russia

T. S Sveklina

S.M. Kirov Military Medical Academy

Email: ksnwma@mail.ru
Saint-Petersburg, Russia

S. B Shustov

I.I. Mechnikov North-West State Medical University

Email: ksnwma@mail.ru
Saint-Petersburg, Russia

V. S Chirsky

S.M. Kirov Military Medical Academy

Email: ksnwma@mail.ru
Saint-Petersburg, Russia

D. V Ovchinnikov

S.M. Kirov Military Medical Academy

Email: ksnwma@mail.ru
Saint-Petersburg, Russia

M. I Eliseeva

S.M. Kirov Military Medical Academy

Email: ksnwma@mail.ru
Saint-Petersburg, Russia

References

  1. Heidenreich P.A., Albert N.M., Allen L.A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circulation: Heart Failure 2013; 6(3): 606-19.
  2. World Health Statistics 2020. World Health Organization, https://www.who.int/data/gho/whs-2020-visual-summary.
  3. Липовецкий Б.М., Климов А.Н. Быть или не быть инфаркту. СПб.: Культурная Инициатива; 2002
  4. Martin-Fernandez B., Gredilla R. Mitochondria and oxidative stress in heart aging. AGE 2016; 38(4): 225-38.
  5. Woodall B.P., Gustafsson A.B. Autophagy-A key pathway for cardiac health and longevity. Acta Physiol. (Oxf.) 2018; 223(4): 13074.
  6. Picca A., Guerra F., Calvani R. et al. Mitochondrial Dysfunction and Aging: Insights from the Analysis of Extracellular Vesicles.Int. J. Mol. Sci. 2019; 20(4): 805.
  7. Waltz T.B., Fivenson E.M., Morevati M. et al. Sarcopenia, Aging and Prospective Interventional Strategies. Current Medicinal Chemistry 2019; 25(40): 5588-96.
  8. Ren J., Bode A.M. Altered cardiac excitation-contraction coupling in ventricular myocytes from spontaneously diabetic BB rats. Am. J. Physiol. Heart Circ. Physiol. 2000; 279(1): H238-44.
  9. Neubauer S. The failing heart - an engine out of fuel. N. Engl. J. Med. 2007; 356(11): 1140-51.
  10. Taanman J.W. The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta 1999; 1410(2): 103-23.
  11. Rangaraju V., Lewis T.L., Hirabayashi Y. et al. Pleiotropic Mitochondria: The Influence of Mitochondria on Neuronal Development and Disease. J. Neurosc. 2019; 39(42): 8200-8.
  12. Sebastian D., Sorianello E., Segales J. et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J. 2016; 35(15): 1677-93.
  13. Zhu Q., Glazier B.J., Hinkel B.C. et al. Neuroendocrine regulation of energy metabolism involving different types of adipose tissues.Int. J. Mol. Sci. 2019; 20(11): 2707.
  14. Gruwel M.L., Culic O., Schrader J. A 133Cs nuclear magnetic resonance study of endothelial Na(+)-K(+)-ATPase activity: can actin regulate its activity? Biophys. J. 1997; 72(6): 2775-82.
  15. Kluge M.A., Fetterman J.L., Vita J.A. Mitochondria and endothelial function. Circ. Res. 2013; 112(8): 1171-88.
  16. Wachsmuth M., Hubner A., Li M. et al. Age-related and heteroplasmy-related variation in human mtDNA copy number. PLoS Genet. 2016; 12(3): e1005939.
  17. Mohamed S.A., Hanke T., Erasmi A.W. et al. Mitochondrial DNA deletions and the aging heart. Exp. Gerontol. 2006; 41(5): 508-17.
  18. Favaro G., Romanello V., Varanita T. et al. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Comm. 2019; 10: 2576.
  19. Pfanner N., Warscheid B., Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews Mol. Cell Biol. 2019; 20: 267-84.
  20. Larsen T.D., Sabey K.H., Knutson A.J. et al. Diabetic pregnancy and maternal high-fat diet impair mitochondrial dynamism in the developing fetal rat heart by sex-specific mechanisms.Int. J. Mol. Sci. 2019; 20(12): 3090.
  21. Drake J.C., Yan Z. Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing. J. Physiol. 2017; 595(20): 6391-9.
  22. Tong M., Sadoshima J. Mitochondrial autophagy in cardiomyopathy. Curr. Opin. Genet. Dev. 2016; 38: 8-15.
  23. Yoo S.M., Jung Y.K., Yoo S.M. et al. A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol. Cells 2018; 41(1): 18-26.
  24. Parzych K.R., Klionsky D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014; 20(3): 460-73.
  25. Del Re D.P., Amgalan D., Linkermann A. et al. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 2019; 99(4): 1765-817.
  26. Moe G.W., Marin-Garcia J. Role of cell death in the progression of heart failure. Heart Fail. Rev. 2016; 21(2): 157-67.
  27. Goncalves R.L., Quinlan C.L., Perevoshchikova I.V. et al. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 2015; 290(1): 209-27.
  28. Thoma A., Akter-Miah T., Reade R.L. et al. Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Biogeront. 2020; 21(4): 475-84.
  29. Gongalves V.F., Gongalves V.F. Mitochondrial Genetics. Adv. Exp. Med. Biol. 2019; 1158: 247-55.
  30. O'Hara R., Tedone., Ludlow A. et al. Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single-cell resolution. Genome Res. 2019; 29(11): 1878-88.
  31. Jiang M., Kauppila T.E.S., Motori E. et al. Increased total mtDNA copy number cures male infertility despite unaltered mtdna mutation load. Cell Metabol. 2017; 26(2): 429-36.e4.
  32. Chatterjee A., Mambo E., Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene 2006; 25(34): 4663-74.
  33. Calvo S.E., Mootha V.K. The mitochondrial proteome and human disease. Annu. Rev. Genomics Hum. Genet. 2010; 11: 25-44.
  34. Bonawitz N.D., Clayton D.A., Shadel G.S. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol. Cell 2006; 24(6): 813-25.
  35. Yan C., Duanmu X., Zeng L. et al. Mitochondrial DNA: distribution, mutations, and elimination. Cells 2019; 8(4): 379.
  36. Anderson S., Bankier A.T., Barrell B.G. et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290(5806): 457-65.
  37. Andrews R.M., Kubacka I., Chinnery P.F. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999; 23(2): 147.
  38. Sevini F., Giuliani C., Vianello D. et al. mtDNA mutations in human aging and longevity: Controversies and new perspectives opened by high-throughput technologies. Exp. Geront. 2014; 56: 234-44.
  39. Мазунин И.О., Володько Н.В., Стариковская Е.Б. и др. Митохондриальный геном и митохондриальные заболевания человека. Мол. Биол. 2010; 44(5): 755-72
  40. Shen C.M., Hu L., Yang C.H. et al. А Genetic polymorphisms of 54 mitochondrial DNA SNP loci in Chinese Xibe ethnic minority group. Sci. Rep. 2017; 7: 44407.
  41. Herbst A., Lee C.C., Vandiver A.R. et al. Mitochondrial DNA deletion mutations increase exponentially with age in human skeletal muscle. Aging Clin. Exp. Res. 2021; 33(7): 1811-20.
  42. Alston C.L., Rocha M.C., Lax N.Z. et al. The genetics and pathology of mitochondrial disease. J. Pathol. 2017; 241(2): 236-50.
  43. Dubie J.J., Caraway A.R., Stout M.M. et al. The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2020; 375(1790): 20190174.
  44. Fontana G.A., Gahlon H.L. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucl. Acids Res. 2020; 48(20): 11244-58.
  45. Cortopassi G.A., Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucl. Acids Res. 1990; 18(23): 6927-33.
  46. Сукерник Р.И., Дербенева О.А., Стариковская Е.Б. и др. Митохондриальный геном и митохондриальные болезни человека. Генетика 2002; 38(2): 1-10
  47. Aziz M.Y., Salihah A., Nashwa M.K. et al. A comprehensive overview of mitochondrial DNA 4977-bp deletion in cancer studies. Oncology Reviews 2019; 13(1): 409.
  48. Elson J.L., Samuels D.C., Turnbull D.M. et al. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet. 2001; 68(3): 802-6.
  49. Jokinen R., Battersby B.J. Insight into mammalian mitochondrial DNA segregation. Ann. Med. 2012; 45(2): 149-55.
  50. Chan D.C. Mitochondrial Dynamics and Its Involvement in Disease. Annu. Rev. Pathol. 2020; 15(1): 235-59.
  51. Nicolas-Avila J.A., Lechuga-Vieco A.V., Esteban-Martinez L. et al. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020; 183(1): 94-109.
  52. Duan M., Chen L., Ge Q. et al. Evaluating heteroplasmic variations of the mitochondrial genome from whole genome sequencing data. Gene 2019; 699: 145-54.
  53. Just R.S., Irwin J.A., Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci.Int. Genet. 2015; 18: 131-9.
  54. Duan M., Tu J., Lu Z. Recent Advances in Detecting Mitochondrial DNA Heteroplasmic Variations. Molecules 2018; 23(2): 323.
  55. Venegas V., Halberg M.C. Quantification of mtDNA mutation heteroplasmy (ARMS qPCR). Methods Mol. Biol. 2012; 837: 313-26.
  56. Taylor C.R., Kiesler K.M., Sturk-Andreaggi K. et al. Platinum-Quality Mitogenome Haplotypes from United States Populations. Genes (Basel) 2020; 11(11): 1290.
  57. Rosenberg I.H. Sarcopenia: origins and clinical relevance. Clin. Geriatr. Med. 2011; 27(3): 337-9.
  58. Lee C.M., Lopez M.E., Weindruch R. et al. Association of age-related mitochondrial abnormalities with skeletal muscle fiber atrophy. Free Radic. Biol. Med. 1998; 25(8): 964-72.
  59. Zhang X., Trevino M.B., Wang M. et al. Impaired mitochondrial energetics characterize poor early recovery of muscle mass following hind limb unloading in old mice. J. Gerontol. A Biol. Sci. Med. Sci. 2018; 73(10): 1313-22.
  60. Lopez M.E., Van Zeeland N.L., Dahl D.B. et al. Cellular phenotypes of age-associated skeletal muscle mitochondrial abnormalities in rhesus monkeys. Mutat. Res. 2000; 452(1): 123-38.
  61. Song S., Lam E.W., Tchkonia T. et al. Senescent cells: emerging targets for human aging and age-related diseases. Trends Biochem. Sci. 2020; 45(7): 578-92.
  62. Hsieh R.H., Hou J.H., Hsu H.S. et al. Age-dependent respiratory function decline and DNA deletions in human muscle mitochondria. Biochem. Mol. Biol.Int. 1994; 32(60): 1009-22.
  63. Tai H., Wang Z., Gong H. et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017; 13: 99-113.
  64. Korolchuk V.I., Miwa S., Carroll B. et al. Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine 2017; 21: 7-13.
  65. Dalle Pezze P., Nelson G., Otten E.G. et al. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014; 10(8): e1003728.
  66. Lazarou M., Sliter D.A., Kane L.A. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015; 524(7565): 309-14.
  67. Urbina-Varela R., Castillo N., Videla L.A. et al. Impact of mitophagy and mitochondrial unfolded protein response as new adaptive mechanisms underlying old pathologies: sarcopenia and non-alcoholic fatty liver disease.Int. J. Mol. Sci. 2020; 21(20): 7704.
  68. Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 2012; 441(2): 523-40.
  69. Chen Z., Liu X., Ma S. The Roles of Mitochondria in Autophagic Cell Death. Cancer Biother. Radiopharm. 2016; 31(8): 269-76.
  70. Ghosh R., Vinod V., Symons J.D. et al. Protein and Mitochondria Quality Control Mechanisms and Cardiac Aging. Cells 2020; 9(4): 933.
  71. Zhang R., Wang Y., Ye K. et al. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genomics 2017; 18(1): 890.
  72. Kennedy S.R., Salk J.J., Schmitt M.W. et al. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 2013; 9(9): e1003794.
  73. Ziada A.S., Lu M.Y., Ignas-Menzies J. et al. Mitochondrial DNA somatic mutation burden and heteroplasmy are associated with chronological age, smoking, and HIV infection. Aging Cell 2019; 18(6): e13018.
  74. Ding J., Sidore C., Butler T.J. et al. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools. PLoS Genet. 2015; 11(7): e1005306.
  75. Kraytsberg Y., Kudryavtseva E., McKee A.C. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 2006; 38: 518-20.
  76. Miller F.J., Rosenfeldt F.L., Zhang C. et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003; 31(11): e61.
  77. Lee H.C., Pang C.Y., Hsu H.S. et al. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim. Biophys. Acta 1994; 1226(1): 37-43.
  78. Meissner C., Bruse P., Mohamed S.A. et al. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp. Gerontol. 2008; 43(7): 645-52.
  79. Liu V.W., Zhang C., Nagley P. Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing. Nucleic Acids Res. 1998; 26(5): 1268-75.
  80. Cao J., Cao Z., Pathare P. et al. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J. 2001; 15(2): 322-32.
  81. Muller-Hocker J. Cytochrome c oxidase deficient cardiomyocytes in the human heart an age-related phenomenon: A histochemical ultracyto-chemical study. Am. J. Pathol. 1989; 134(5): 1167-73.
  82. Muller-Hocker J. Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration. J. Neurol. Sci. 1990; 100(1-2): 14-21.
  83. Kopsidas G., Kovalenko S.A., Heffernan D.R. et al. Tissue mitochondrial DNA changes. A stochastic system. Ann. N-Y Acad. Sci. 2000; 908: 226-43.
  84. Cao Z., Wanagat J., McKiernan S.H. et al. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res. 2001; 29(21): 4502-8.
  85. Herbst A., Pak J.W., McKenzie D. et al. Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J. Gerontol. A: Bio. Sci. Med. Sci. 2007; 62(3): 235-45.
  86. Fayet G., Jansson M., Sternberg D. et al. Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul. Disord. 2002; 12(5): 484-93.
  87. Wei Y.H., Wu S.B., Ma Y.S. et al. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med. J. 2009; 32(2): 113-32.
  88. Khrapko K., Bodyak N., Thilly W.G. et al. Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res. 1999; 27(11): 2434-41.
  89. Lu Y., Zhao D., Yao S. et al. Mitochondrial tRNA genes are hotspots for mutations in a cohort of patients with exercise intolerance and mitochondrial myopathy. J. Neurol. Sci. 2017; 379: 137-43.
  90. Higami Y., Shimokawa I. Apoptosis in the aging process. Cell Tissue Res. 2000; 301(1): 125-32.
  91. Kajstura J., Cheng W., Sarangarajan R. et al. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am. J. Physiol. 1996; 271(3 Pt 2): H1215-28.
  92. Konstantinidis K., Whelan R.S., Kitsis R.N. Mechanisms of cell death in heart disease. Arterioscler. Thromb. Vasc. Biol. 2012; 32(7): 1552-62.
  93. No M.H., Choi Y., Cho J. et al. Aging Promotes Mitochondria-Mediated Apoptosis in Rat Hearts. Life (Basel) 2020; 10(9): 178.
  94. Quan Y., Xin Y., Tian G. et al. Mitochondrial ROS-Modulated mtDNA: A Potential Target for Cardiac Aging. Oxidative Medicine and Cellular Longevity 2020; 2020: 9423593.
  95. Riley J.S., Tait S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020; 21(4): e49799.
  96. Lightfoot A.P., McCormick R., Nye G.A. et al. Mechanisms of skeletal muscle ageing; avenues for therapeutic intervention. Curr. Opin. Pharmacol. 2014; 16: 116-21.
  97. Collins L.V., Hajizadeh S., Holme E. et al. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J. Leukoc. Biol. 2004; 75(6): 995-1000.
  98. Collins T., Hikoso S., Yamaguchi O. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012; 485(7397): 251-5.
  99. Kirkland J.L., Tchkonia T. Cellular Senescence: A Translational Perspective. EbioMed. 2017; 21: 21-8.
  100. Incalza M.A., D'Oria R., Natalicchio A. et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018; 100: 1-19.
  101. Konstantinidis K., Kitsis R.N. Cardiovascular biology: Escaped DNA inflames the heart. Nature 2012; 485(7397): 179-80.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies