From organ transplantation to reparative spheroids and «microtissues» in suspension 3D-culture

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

4 experimental alternatives has been developed for
organ transplantation: 1. Cell therapy as a suspension of
disorganized somatic and stem cells. 2. The Grafts of well
differentiated cells on 3D-matrix to compensate (restore)
the damaged function. 3. Translational medicine - single
selected pilot project of personalized medicine of auto- stem
cell sphere transplantation with a new emergent potential for
tissue morphogenesis and regeneration. 4. High throughput
cellular serial fabrics for multiple generation of standard
micro-tissues and 3D-mini-tissues. They are especially
devoted to this essay.

About the authors

V S Repin

Institute of General Pathology and Pathophysiology RAMS, Moscow

Institute of General Pathology and Pathophysiology RAMS, Moscow

I N Saburina

Institute of General Pathology and Pathophysiology RAMS, Moscow

Institute of General Pathology and Pathophysiology RAMS, Moscow

References

  1. Genuis S.J. Medical practice and community health care in the 21 century: a time of change. Public. Health. 2008; 122: 671-80.
  2. Brenner S. Editorial: humanity as the model system. Science 2003; 302: 533
  3. Perpich J.G. The dawn of genomic and regenerative medicine: new paradigm for medicine, the public health and society. Technol. in Society. 2004; 26: 405-14
  4. Rivron N.C., Rouwkewa J., Truckenmuller R. et al. Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Biomaterials 2009; 30: 4851-8.
  5. Mironov V., Visconti R.R., Kasjanov V. et al. Organ printing: tissue spheroids as a building blocks. Biomaterials 2009; 30: 2164-74.
  6. Koch T.G., Berg L.C., Betts D.H. et al. Current and Future Regenerative Medicine. Can. Vet. J. 2009; 50: 155-65.
  7. Cohen I.R., Harel D. Explaining a complex living system: dynamics, multiscaling and emergence. J. R. Soc. Interface. 2007; 4: 175-82
  8. Milotti E., Chignola R. Emergent properties of tumor microenvironment in a real life model of multicellular tumor spheroids. PlosONE 2010; 5: e3942-e52.
  9. Wolkenhauer O., Shibata D.K., Mesarovich M. A stem cell niche microdominance theorem. BMC System Biol. 2011; 54: 1-16.
  10. Khademhosseini A., Langer R., Borenstein J. et al. Microscale technologies for tissue engineering and biology. PNAS USА 2006; 103: 2480-7.
  11. Sakamoto K., Nakahara T., Ishii T. Rho-Rho kinase are involved in the protective effect of of early ischemic preconditioning in the rat heart. Biol. Pharm. Bull. 2011; 34: 156-9.
  12. Zhang L., Valdez J.M., Zhang B. et al. ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/ progenitor cells and increases their cloning efficiency. PlosONE 2011; 6: e18271-e81.
  13. Сhayosumrit M., Tuch B., Sidhu K. et al. Alginate microcapsules for propagation and directed differentiation of hESCs to definive endoderm. Biomaterials 2010; 31: 505-19.
  14. Ruiz S.A., Chen C.S. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 2008; 26: 2921-7.
  15. Lund A.W., Yener B., Stegeman J.P. et al. The natural and engineered 3D microenvironment as a regulatory cue during stem cell fatr determination. Tissue Eng. 2009; 15: 371-80.
  16. Nelson T.I., Behfar A., Terzic A. Strategies for therapeutic repair: The 6 R regenerative medicine paradigm. CTS 2008; 1: issue 2: 168-88.
  17. Sedivy J.M., Banumathy G., Adams P.D. Aging by epigenetics - a consequence of chromatin damage? Exp. Cell Res. 2008; 314: 1909-17.
  18. Sinclair D., Oberdoerffer P. The aging epigenome: damage beyond repair? Aeing. Res. Rev. 2009; 8: 189-98.
  19. Fraga M.F. Genetic and epigenetic regulation of aging. Curr. Opin. Imuunol. 2009; 21: 446-53.
  20. Turchinsky A.L., Turner B., Borja R.C. DAnCER: disease annotated chromatin epigenetics. Nucleic Acid Res. 2011; 39: D789-98.
  21. Ernst J., Kellis M. Discovery and characterization of chromatin states for systemic annotation of the human genome. Nature Biotechnol. 2010; 28: 817-30.
  22. Collino F., Deregibus M.C., Bruno S. Microvesicles derived from adult human bone marrow and tissue specific MSCs shuttle selected patterns of micro-RNAs. PlosONE 2010; 5: e11803-e13
  23. Naylor S., Chen J.Y. Unraveling human complexity and disease with system biology and personalized medicine. Per. Med. 2010; 7: 275-89.
  24. Hime G.R., Samers W.G. Micro-RNA-mediayed regulation of proliferation, self-renewal and differentiaton of mammalian stem cells. Cell Adhes. Migrat. 2009; 3: 425-32.
  25. Shalgi R., Lieber D., Oran M. et al. Global and local architecture of the mammalianmicro-RNAs - transcriptional factor regulation network. PloS Comput. Biol. 2007; 3: e1310-e41.
  26. Li J., Liu Y., Kim T. et al. Gene expression variability within and between human populatons and implications toward disease susceptibility. Plos. Comput. Biol. 2010; 6: e1000910-e945
  27. Kuhn D.E., Nuovo G.J., Terry A.V. et al. Chromosome-2`1- derived micro-RNAs provide an ethiological basis for aberrant protein expression in human Dawn syndrome brain. J. Biol. Chem. 2010; 285: 1529-43.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies