«Niche - relief» conception for stem cells as a basis of biomimetic approach to boneand hemopoietic tissues engineering



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An affect of relief features and quantitative parameters
of model mineral matrix on in vitro structure-functional
status of human lung prenatal stromal cells (HLPSC) and
in vivo remodeling of mice bone/marrow system has been
studied. According to data established, rough (Ra > 2 m)
implants with calcium phosphate micro-arc coatings simulate
three-dimensional state of regenerating bone matrix. Such
surfaces have own structure-functional sites (microregions)
which were named by niche - relief and were necessary
for maturation and differentiation of HLPSC to secreting
osteoblasts. Maximum remodeling of mice bone/marrow
system in heterotopic test in vivo was also observed under
optimal parameters of osteogenic niche in vitro (approximately
43% average index of cellular alkaline phosphatase square
to artificial microregion area). A probable cell-molecular
mechanism of influence experimental 3D-modeling of bone
surface on selection of quiescent or active state by endosteal
niche has been detected. It connects with activating cellular
production of bone matrix components (alkaline phosphatase,
osteocalcin, collagen, calcium phosphates) that dissociate
dimensionally stromal and hemopoietic elements, and with
parallel diminishing TNF secretion in intercellular medium.
The data obtained develop our previous speculations about
existence and sizes of artificial endosteal niche for osteogenic
differentiation of multipotent mesenchimal stromal cells.

About the authors

I A Khlusov

Siberian State Medical University, Tomsk

Siberian State Medical University, Tomsk

N M Shevtsova

Siberian State Medical University, Tomsk

Siberian State Medical University, Tomsk

M Yu Khlusova

Siberian State Medical University, Tomsk

Siberian State Medical University, Tomsk

K V Zaitsev

Tomsk SRI of Balneology and Physiotherapy, Tomsk

Tomsk SRI of Balneology and Physiotherapy, Tomsk

Yu P Sharkeev

Institute of Strength Physics and Materials Science of SB RAS, Tomsk

Institute of Strength Physics and Materials Science of SB RAS, Tomsk

V F Pichugin

Research and Education Center Biocompatible Materials and Bioengineering attached to Tomsk Polytechnic Universityand Siberian State Medical University, Tomsk

Research and Education Center Biocompatible Materials and Bioengineering attached to Tomsk Polytechnic Universityand Siberian State Medical University, Tomsk

E V Legostaeva

Institute of Strength Physics and Materials Science of SB RAS, Tomsk

Institute of Strength Physics and Materials Science of SB RAS, Tomsk

References

  1. Dellatore S.M., Garsia A.S., Miller W.M. Mimicking stem cell niches to increase stem cell expansion. Curr.Opin.Biotechnol. 2008; 19: 534-40.
  2. Yin T., Li L. The stem cell niches in bone. J. Clin. Inv. 2006; 116(5): 1195-201.
  3. Jing D., Fonseca A.-V., Alakel N. et al. Hematopoietic stem cells in co-culture with mesenchemal stromal cells - modeling the niche compartments in vitro. Haematologica 2010; 95: 542-50.
  4. Kolf C.M., Cho E., Tuan R.S. Mesenchemal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res.Ther. 2007; 9: 204-19.
  5. Meirelles L., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 2006; 119: 2204-13.
  6. Scadden D.T. The stem cell niche in health and leukemic disease. Best Pract. Res.Clin. Haematol. 2007; 20: 19-27.
  7. Purton L.E., Scadden D.T. The hematopoietic stem cell niche. In: Silberstein L., editor. StemBook. The Stem Cell Research Community; 2008. http://www.ncbi.nlm.nih.gov/books/NBK27051/pdf/The_ hematopoietic_stem_cell_niche.pdf.
  8. Хлусов И.А., Хлусова М.Ю., Зайцев К.В. и др. Пилотное ис- следование in vitro параметров искусственной ниши для остеогенной дифференцировки пула стромальных стволовых клеток человека. Клеточные технологии в биологии и медицине 2010; (4): 216-24.
  9. Bhattacharya D., Czechowicz A., Ooi A.G.L. et al. Niche recyclingthrough division-independent egress of hematopoietic stem cells. J.Exp.Med. 2009; 206: 2837-50.
  10. Риггз Б.Л., Мелтон III.Л. Остеопороз: пер. с англ. СПб.: Из- дательство БИНОМ, Невский диалект; 2000.
  11. Curtis A.S., Varde M. Control of cell behavior: Topological factors. J. Natl. Cancer Inst. 1964; 33: 15-26.
  12. Sniadecki N.J., Desai R.A., Ruiz S.A. et al. Nanotechnology for cell-substrate interactions. An. Biomed. Engin. 2006; 34: 59-74.
  13. Lutolf M.P., Gilbert P.M., Blau H.M. Designing materials to direct stem-cell fate. Nature 2009; 462: 433-41.
  14. Lutolf M.P., Doyonnas R., Havenstrite K. et al. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol. (Camb). 2009; 1: 59-69.
  15. Wilson A., Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 2006; 6: 93-106.
  16. Sharkeev Yu.P., Legostaeva E.V., Eroshenko A.Yu. et.al. The structure and physical and mechanical properties of a novel biocomposite material, nanostructured titanium-calcium-phosphate coating. Composite Interfaces 2009; 16: 535-46.
  17. Pichugin V. F., Eshenko E. V., Surmenev R.A. et al. Application of high-frequency magnetron sputtering to deposit thin calciumphosphate biocompatible coatings on a titanium surface. J. Surface Investigation 2007; 1(6): 679-82.
  18. Чайкина М.В., Хлусов И.А., Карлов А.В. и др. Механохи- мический синтез нестехиометрических и замещенных апатитов с наноразмерными частицами для использования в качестве био- совместимых материалов. Химия в интересах устойчивого развития 2004; 12: 389-99.
  19. Тиц Н. Клиническое руководство по лабораторным тестам: пер.с англ. М.: Юнимед-Пресс; 2003.
  20. Хейхоу Ф.Г., Кваглино Д. Гематологическая цитохимия. М.: Медицина; 1983.
  21. Klein C., De Groot K., Chen W. et al. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials 1994; 15: 31-4.
  22. Волкова М.А. Клиническая онкогематология. М.: Медици- на; 2001.
  23. Li W., Yu B., Li M. et al. NEMO-binding domain peptide promotes osteoblast differentiation impaired by tumor necrosis factor alpha. Biochem. Biophys. Res. Commun. 2010; 391(2): 1228-33.
  24. Corcione A., Benvenuto F., Ferretti E. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107(1): 367-72.
  25. Duncan A.W., Rattis F.M., DiMascio L.N. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nat. Immunol. 2005; 6: 314-22.
  26. Trentin J.J. Determination of bone marrow stem cell differentiation by stromal hemopoietic inductive microenvironments (HIM). Am. J. Pathol. 1971; 65: 621-8.
  27. Kollet O., Dar A., Shivtiel S. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 2006; 12: 657-64.
  28. Eshghi S., Schaffer D.V. Engineering microenvironments to control stem cell fate and function. In: Bhatia S., Polak J., editors. StemBook. The Stem Cell Research Community; 2008. http://www. ncbi.nlm.nih.gov/books/NBK27048.
  29. Porter R.L., Calvi L.M. Comunications between bone cells and hematopoietic stem cells. Arch. Biochem. Biophys. 2008; 473(2): 193-200.
  30. Frisch B.J., Porter R.L., Calvi L.M. Hematopoietic niche and bone meet. Curr. Opin. Support. Palliat. Care. 2008; 2: 211-7.
  31. Taichman R.S. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005; 105(7): 2631-9.
  32. Chan C.K., Chen C.C., Luppen C.A. et al. Endochondral ossification is required for hematopoietic stem cell niche formation. Nature 2009; 457: 490-4.
  33. Фриденштейн А.Я., Лурия Е.А. Клеточные основы кровет- ворного микроокружения. М.: Медицина; 1980.
  34. De Barros A.P., Takiya C.M., Garzoni L.R. et al. Osteoblasts and bone marrow mesenchemal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One. 2010; 5: e9093-9111.
  35. Miura Y., Gao Zh., Miura M. et al. Mesenchymal stem cellorganized bone marrow elements: an alternative hematopoietic progenitor resource. Stem Cells 2006; 24(11): 2428-36.
  36. Ratner B.D., Hoffman A.S., Schoen F.J. et al, editors. Biomaterials Science: an introduction to materials in medicine. 2nd ed. Elsevier Inc.; 2004.
  37. Серов В.В., Шехтер А.Б. Соединительная ткань: функцио- нальная морфология и общая патология. М.: Медицина;1981.
  38. Birgersdotter A., Sandberg R., Ernberg I. Gene expression perturbation in vitro - a growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 2005; 15: 405-12.
  39. Boyan B.D., Lossdorfer S., Wang L. et al. Surface microtopography regulates osteoblasts. Eur. Cells Mat. 2003; 6: 22-7.
  40. Peerani R., Rao B.M., Bauwens C. et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO 2007; 26: 4744-55.
  41. Aerts F., Wagemaker G. Mesenchymal stem cell engineering and transplantation. In: J.A. Nolta, editor. Genetic Engineering of Mesenchymal Stem Cells. Springer; 2006: p. 1-44.
  42. Khlusov I.A., Karlov A.V., Sharkeev Yu.P. et al. Osteogenic potential of mesenchymal stem cells from bone marrow in situ: role of physicochemical properties of artificial surfaces. Bull. Exp. Biol. Med. 2005; 140(1): 144-52.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies