Derma fibroblasts: peculiarities of cytogenesis, histophysiology and possible clinical use



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Gaining current experimental data a major concept on
fibroblasts, the main cells of loose and dense connective
tissue, undergoes significant changes moving away off classical
concepts. Considering fibroblasts as a true phenotypic
category we tried to address most challenging issues relating
to definition of a fibroblast differon, cellular sources of their
cytogenesis, histophysiology, their ageing changes in terms of
influence on possible clinical use.

About the authors

A I Zorina

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

I Ya Bozo

S.M. Kirov Military Medical academy, Saint Petersburg

S.M. Kirov Military Medical academy, Saint Petersburg

V L Zorin

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

V R Cherkasov

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

R V Deev

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

References

  1. Данилов Р.К. Общие принципы клеточной организации, раз- вития и классификации тканей. Руководство по гистологии. Т.1. Санкт-Петербург: СпецЛит; 2001.
  2. Бозо И.Я., Деев Р.В., Пинаев Г.П. «Фибробласт» - специали- зированная клетка или функциональное состояние клеток мезен- химного происхождения? Цитология 2010; 52(2): 99-109.
  3. Stephens P., Genever P. Non-epithelial oral mucosal progenitor cell populations. Oral Diseases 2007; 13: 1-10.
  4. Байрейтер К., Франц П., Родеман Х. Фибробласты при нор- мальной и патологической терминальной дифференцировке, старении, апоптозе и трансформации. Онтогенез 1995; 26(1): 22-37.
  5. Nolte S.V., Xu W., Rennekampff H.O. et al. Diversity of fibroblasts - a review on implications for skin tissue engineering cells tissues organs. Cells Tissues Organs 2008; 187: 165-76.
  6. Herskind C., Bentzen S., Overgaard J. et al. Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy. Radiother. Oncol. 1998; 47: 263-9.
  7. Rodemann H., Bayreuther К., Francz Р. et al. Selective enrichment and biochemical characterisation of seven fibroblast cell types of human skin fibroblast populations in vitro. Exp. Cell Res. 1989; 180: 84-93.
  8. Hakenjos L., Bamberg H., Rodemann H. et al. TGF-b1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic response. Int. J. Radiat. Biol. 2000; 76: 503-9.
  9. Dimri G., Lee X., Basile G. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS USA 1995; 92: 9363-7.
  10. Doherty M., Ashton B., Walsh S. et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 1998; 13: 828-38.
  11. Doherty M.J., Canfield A.E. Gene expression during vascular pericyte differentiation. Crit. Rev. Eukaryot. Gene Expr. 1999; 9: 1-17.
  12. Diaz-Flores L., Gutierrez R., Varela H. et al. Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol. 1991; 6: 269-86.
  13. Farrington-Rock C., Crofts N., Doherty M. et al. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 2004; 110: 2226-32.
  14. Sorrell M., Caplan A.I. Fibroblasts - a diverse population at the center of it all. Int. Rev. Cell Mol. Biol. 2009; 276: 161-214.
  15. Chen F., Zhang W., Bi D. et al. Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis. J. Cell Sci. 2007; 120: 2875-83.
  16. Toma J., Akhavan M., Fernandes K. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 2001; 3: 778-84.
  17. Toma J., McKenzie I., Bagli D. et al. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 2005; 23: 727-37.
  18. Lorenz K., Sicker M., Schmelzer E. et al. Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp. Dermat. 2008; 17: 925-32.
  19. Fernandes K., Toma J., Miller F. Multipotent skin-derived precursors: adult neural crest-related precursors withtherapeutic potentia Phil. Trans. R. Soc. B. 2008; 363: 185-198.
  20. Young H., Steele T., Bray R. et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat. Rec. 2001; 264: 51-62.
  21. Bartsch G., Yoo J., De Coppi P. et al. Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev. 2005; 14: 337-48.
  22. Киселева Е.В., Чермных Э.С., Воротеляк Е.А. и др. Сравне- ние дифференцировочных потенций фибробластоподобных клеток стромы костного мозга, жировой ткани, волосяного сосочка и фи- бробластов дермы человека. Цитология 2009; 51(1): 12-9.
  23. Sieber-Blum M., Grim M., Hu Y. et al. Pluripotent neural crest stem cells in the adult hair follicle. Dev. Dyn. 2004; 231: 258-69.
  24. Lorenz K., Sicker M., Schmelzer E. et al. Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp. Dermat. 2008; 17: 925-32.
  25. Lavoie J-F., Biernaskie J., Chen Y. et al. Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem cells develop. 2009; 18(6): 893-905.
  26. Gago N., Perez-Lopes V., Sanz-Jaka J. et al. Age-dependent depletion of human skin-derived progenitor cells. Stem Cells 2009; 27: 1164-72.
  27. Bi D., Chen F., Zhang W. et al. Differentiation of human multipotent dermal fibroblast into islet-like cell cluster. BMC Cell Biol. 2010; 11: 46.
  28. Bianco P., Robey P., Simmons P. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2(4): 313-9.
  29. Fu X., Sun X. Can hematopoietic stem cells be an alternative source for skin regeneration? Ageing Res. Rev. 2009; 8(3): 244-9.
  30. Martin-Ruiz C., Saretzki G., Petrie J. et al. Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative lifespan. J. Biol. Chem. 2004; 279(17): 17826-33.
  31. Middelkoop E. Fibroblast phenotypes and their relevance for wound healing. Int. J. Low extrem.Wounds. 2005; 4: 9-11.
  32. Sellheyer K., Krahl D. Skin mesenchymal stem cells: prospects for clinical dermatology. J. Am Acad. Dermat. 2009; 10(1016): 1-7.
  33. Хрущов Н.Г. Гистогенез соединительной ткани: Экспери- ментальные исследования происхождения фибробластов. Мо- сква: Наука; 1976.
  34. Ланге М.А. Авторадиографическое исследование происхо- ждения и обновления фибробластоподобных элементов очага ново- образования соединительной ткани (диссертация). Москва; 1975.
  35. Friedenstein A.J., Deriglasova U.F., Kulagina N.N. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 1974; 2(2): 83-92.
  36. Ogawa M., LaRue A.C., Drake C.J. Hematopoietic origin of fibroblasts/myofibroblasts: its pathophysiologic implications. Blood 2006; 108(9): 2893-6.
  37. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276 (5309): 71-4.
  38. Lama V.N., Phan S.H. The Extrapulmonary origin of fibroblasts: stem/progenitor cells and beyond. Proc. Am. Thorac. Soc. 2006; 3(4): 373-6.
  39. Щелкунов С. Интима мелких артерий и вен. Арх. Биол. Наук. 1935; 37(3); 609-37.
  40. Chang H.Y., Chi J.T., Dudoit S. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. PNAS USA 2002; 99(20): 12877-82.
  41. Bucala R., Spiegel L., Chesney J. et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1994; 1: 71-81.
  42. Quan T., Cowper S., Wu S. et al. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell Biol. 2004; 36: 598-606.
  43. Hartlapp I., Abe R., Saeed R. et al. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 2001; 15: 2215-24.
  44. Chesney J., Bacher M., Bender A. et al. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naiveT cells in situ. PNAS USA 1997; 94: 6307-12.
  45. Abe R., Donnelly S., Peng T. et al. Peripheral blood fibrocytes: differentiation pathwayand migration to wound sites. J. Immunol. 2001; 166: 7556-62.
  46. Kuznetsov S.A., Mankani M.H., Leet A.I. et al. Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells 2007; 25(7): 1830-9.
  47. Levesque J.P., Winkler I.G. Mobilization of hematopoietic stem cells: state of the art. Curr. Opin. Organ Transplant. 2008; 13(1): 53-8.
  48. Серов В.В., Шехтер А.Б. Соединительная ткань (функцио- нальная морфология и общая патология). Москва: Медицина; 1981.
  49. Юрина Н.А., Радостина А.И. Морфофункциональная гете- рогенность и взаимодействие клеток соединительной ткани: Моно- графия. Москва: Изд-во УДН; 1990.
  50. Lochner K., Gaemlich A., Südel K.M. et al. Expression of decorin and collagens I and III in different layers of human skin in vivo: a laser capture microdissection study. Biogerontology 2007; 8(3): 269-82.
  51. Mine S., Fortunel N., Pageon H. et al. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: A New View of Skin Morphogenesis and Aging 2008; 3: 1-13.
  52. Aumailley M., Rousselle P. Laminins of the dermo-epidermal junction. Matrix Biol. 1999; 18: 19-28.
  53. Moulin V., Auger F., Garrel D. et al. Role of wound healing myofibroblasts on re-epithelialization of human skin. Burns 2000; 26: 3-12.
  54. Sorrel J.M., Caplan A.I. Fibroblast heterogeneity: more than skin deep. J. Cell Sci. 2004; 117: 667-75.
  55. Омельяненко Н.П., Л.И. Слуцкий. Соединительная ткань (гистофизиология и биохимия). Москва: Известия; 2009.
  56. Chang H., Chi J-T., Dudoit S. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. PNAS 2002; 99(20): 12877-82.
  57. Lee D., Cho K. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in threedimensional culture systems. Arch. Dermatol. Res. 2005; 296: 296-302.
  58. Marionnet C., Pierrard C., Vioux-Chagnoleau C. et al. Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epidermal junction in a model of reconstructed skin. J. Inv. Dermatol. 2006; 126: 971-9.
  59. Пальцев М.А., Иванов А.А. Межклеточные взаимодействия. Москва: Медицина; 1995.
  60. Kalluri R., Zeisberg M. Fibroblasts in cancer. Nature Publishing Group 2006; 6: 392-401.
  61. Sorrell J., Baber M., Caplan A. Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J. Cell. Physiol. 2004; 200: 134-45.
  62. Ghalbzouri A., Lamme E., Ponec M. Crucial role of fibroblasts in regulating epidermal morphogenesis. Cell Tissue Res. 2002; 310: 189-99.
  63. Boehnke K., Mirancea N., Pavesio A. et al. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur. J. Cell Biol. 2007; 86: 731-46.
  64. Жукова О., Потекаев Н., Стенько А. и др. Патогенез и гисто- морфологические особенности рубцовых изменений кожи. Клини- ческая дерматология и венерология 2009; 3: 4-9.
  65. Haniffa M., Collin M., Buckley C. et al. Mesenchymal stem cells: the fibroblasts new clothes? Haemotologica 2009; 94 (2): 258-63.
  66. Tomasek J., Gabbiani G., Hinz B. et al. Myofibroblasts and mechanoregulation of connective tissue remodelling. Mol. Cell Biol. 2002; 3: 349-63.
  67. Gabbiani G., Majno G., Ryan G.B. The fibroblast as a contractile cell: the myofibroblast. In: Biology of fibroblast. London; 1973. p. 139-54.
  68. Jain R. Molecular regulation of vessel maturation. Nat. Med. 2003; 9: 685-93.
  69. Sorrel J., Baber M., Caplan A. Clonal characterization of fibroblasts in the superficial layer of the adult human dermis. Cell Tissue Res. 2003; 327: 499-510.
  70. Supp D., Wilson-Landy K., Boyce S. Human dermal microvascular endothelialcells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J. 2002; 16: 797-804.
  71. Besedovsky H.O. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev. 1996; 17: 64-102.
  72. Richards R.G., Hartman S.M. Human dermal fibroblast cells express prolactin in vitro. J. Invest. Dermatol. 1996; 106(6): 1250-5.
  73. Wu H, Devi R, Malarkey W.B. Localization of growth hormone messenger ribonucleic acid in the human immune system - a clinical research center study. J. Clin. Endocrinol. Metab. 1996; 81(3): 1278-82.
  74. Ashcroft G.S, Greenwell-Wild T, Horan M.A. et. al. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J. Pathol. 1999; 155(4): 1137-46.
  75. Larsen C.G., Anderson A.O., Oppenheim J.J. et. al. Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour necrosis factor. Immunology 1989; 68(1): 31-6.
  76. Korn J.H. Modulation of lymphocyte mitogen responses by cocultured fibroblast. Cell Immunol. 1981; 63(2): 374-84.
  77. Hogaboam C.M., Steinhauser M.L., Chensue S.W. et al. Novel roles for chemokines and fibroblasts in interstitial fibrosis. Kidney Int. 1998; 54(6): 2152-9.
  78. Davies M., Martin J., Thomas G.J. et al. Proteinases and glomerular matrix turnover. Kidney Int. 1992; 41: 671-7.
  79. Soukupova M., Holeckova E. The latent period of explanted organs of newborn, adult and senile rats. Exp. Cell Res. 1964; 33: 361-7.
  80. Schneider E.L., Mitsui Y. The relationship between in vitro cellular aging and in vivo human age. PNAS USA 1976; 73(10): 3584-8.
  81. Iudintseva N.M., Blinova M.I., Pinaev G.P. Characteristics of cytoskeleton organization of human normal postnatal, scar and embryonic skin fibroblasts spreading on different proteins of extracellular matrix. Tsitologiia 2008; 50(10): 861-7.
  82. Reed M.J., Ferara N.S., Vernon R.B. Impaired migration, integrin function, and actin cytoskeletal organization in dermal fibroblasts from a subset of aged human donors. Mech. Ageing Dev. 2001; 122(11): 1203-20.
  83. Schulze C., Wetzel F., Kueper T. et al. Stiffening of human skin fibroblasts with age. Biophys. J. 2010; 99(8): 2434-42.
  84. Smith J.R., Pereira-Smith O.M., Schneider E.L. Colony size distributions as a measure of in vivo and in vitro aging. PNAS USA 1978; 75(3): 1353-6.
  85. Hayflick L. The cell biology of aging. J. Invest. Dermatol. 1979; 73(1): 8-14.
  86. Mammone T, Gan D, Foyouzi-Youssefi R. Apoptotic cell death increases with senescence in normal human dermal fibroblast cultures. Cell Biol. Int. 2006; 30(11): 903-9.
  87. Varani J., Dame M., Rittie L. et al. Decreased collagen production in chronologically aged skin. Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. AJP 2006; 168(6): 1861-8.
  88. Greco M., Villani G., Mazzucchelli F. Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J. 2003; 17(12): 1706-8.
  89. Varani J., Warner R., Gharaee-Kermani M. et al. Vitamin a antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J. Inv. Dermatol. 2000; 114: 480-6.
  90. Смирнова И.О. Функциональная морфология старения кожи. Успехи геронтологии 2004; 13: 44-5.
  91. Iudintseva N.M., Pleskach N.M., Smagina L.V. et al. Reconstruction of the connective tissue as a result of transplantation of fibrins dermal equivalent to the wounds of experimental animals. Tsitologiia 2010; 52(9): 724-8.
  92. Зорин В.Л., Зорина А.И., Петракова О.С. и др. Дермальные фибробласты для лечения дефектов кожи. Клеточная транспланто- логия и тканевая инженерия 2009; 4(4): 26-40.
  93. Boss W.K., Marko O. Isolagen. In: Klein A.W., editor. Tissue augmentation in clinical practice. New York: Marcel Dekker Inc.; 1998. p. 335-47.
  94. Watson D., Keller G.S., Lacombe V. et al. Autologous fibroblasts for treatment of facial rhytids and dermal depressions. A pilot study. Arch. Facial Plast. Surg. 1999; 1: 165-70.
  95. Келлер Г., Себастиан Д., Лакомбе Ю. и др. Сохранность инъецируемых аутологичных человеческих фибробластов. Бюл. Эксп. Биол. Мед. 2000; 130(8): 203-6.
  96. Mentz H., Ruiz A., Patronella C. et al. Use of cultured autologenous fibroblasts for facial rejuvenation. Annual meeting, American Society of Plastic Surgeons; Philadelphia, Pennsylvania; 2004.
  97. Boss W.K., Usal H., Chernoff G. et al. Autologous cultured fibroblasts as cellular therapy in plastic surgery. Clin. Plastic Surg. 2000; 27(4): 613-26.
  98. Boss W. K., Usal H., Fodor P.B. et al. Autologous cultured fibroblast: protein repair system. Ann Plast Surg, 2000; 44: 536-542.
  99. Weiss R.A., Weiss M.A., Beasley K.L. et al. Autologous cultured fibroblast injection for facial contour deformities: a prospective, placebo-controlled, phase III clinical trial. Dermatol. Surg. 2007; 33(3): 263-8.
  100. Макеев О.Г., Улыбин А.И., Зубанов П.С. и др. Использова- ние аутологичных дермальных фибробластов для коррекции дефек- тов кожи. Вест. Эстет. Мед. 2008; 7(2): 72-8.
  101. Туманов В.П. Исследование эффективности использова- ния культивированных аутофибробластов в системе anti-age. Нов. Клин. Цит. России. 2008; 3: 4.
  102. Сысоева В.Ю., Рубина К.А., Калинина Н.И. и др. Аутологич- ные фибробласты дермы: перспективы применения в медицине. В кн.: Ткачук В.А., редактор. Аутологичные стволовые клетки: экспери- ментальные исследования и перспективы клинического применения. Руководство для врачей. Москва: Литтерра; 2009. с. 222-33.
  103. Зорина А., Зорин В., Черкасов В. и др. Применение ауто- логичных дермальных фибробластов человека для коррекции воз- растных изменений кожи. X Международный симпозиум по эстети- ческой медицине; 2011 Янв 26-28; Москва; 2011.
  104. Зорин В., Зорина А., Черкасов В. и др. Качественная и количественная оценка состояния кожи лица после применения аутологичных дермальных фибробластов. Вестник Эстетической Медицины 2011; 10(2): 16-26.
  105. Bouhout S., Perron E., Gauvin R. In vitro reconstruction of an autologous, watertight, and resistant vesical equivalent. Tissue Eng. Part A. 2010; 16(5): 1539-48.
  106. McAllister T.N., Maruszewski M., Garrido S.A. et al. Effectiveness of haemodialysis access with an autologous tissueengineered vascular graft: a multicentre cohort study. Lancet 2009; 373: 1440-6.
  107. Zhen Y., Xu K., Chen X.S. et al. Embolization of aneurysm by chitosan-glycerophosphate-fibroblast tissue hydrogel, a tissue engineering material: experiment with rabbits. Zhonghua Yi Xue Za Zhi. 2009; 89(11): 727-31.
  108. Takahashi K., Yamanaka S., Tanabe K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
  109. Yu J., Vodyanik M.A., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
  110. Wernig M., Meissner A., Foreman R. et. al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448(7151): 260-2.
  111. Strutz F., Okada H., Lo C. et al. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 1995; 130: 393-405.
  112. Seruya M., Shah A., Pedrotty D. Clonal population of adult stem cells: life span and differentiation potential. Cell Transplant. 2004; 13(2): 93-101.
  113. Chunmeng S., Tianmin C. Skin: a promising reservoirfor adult stem cell populations. Med. Hypotheses. 2004; 62: 683-8.
  114. Jahoda C., Reynolds A. Dermal-epidermal interactions. Adult follicle-derived cell populations and hair growth. Dermatol. Clin. 1996; 14: 573-83.
  115. Lako M., Armstrong L., Cairns P. et al. Hair follicle dermal cells repopulate the mouse haematopoietic system. J. Cell Sci. 2002; 115: 3967-74.
  116. Roufosse C., Direkze N., Otto W. et al. Circulating mesenchymal stem cells. Int. J. Biochem. Cell Biol. 2004; 36(4): 585-97.
  117. Tepper O., Capla J., Galiano R. et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 2005, 105(3): 1068-77.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies