Methods of cells labeling for visualization in vivo

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Today cell transplantation is promising treatment of various diseases. The therapeutic potential of cells depends on their migratory activity, the study of which is necessary for developing effective approaches of cell therapy. There are different approaches to investigate cells survival in vivo and spatial distribution in the organism after transplantation. This review summarizes the comparative characteristics of contrast agents such as fluorescent dyes, nanoparticles, radioisotope, reporter genes, and the features of their interaction with the cells. The main advantages and disadvantages of different methods of labeling cells have been analyzed.

About the authors

A. O Solovieva

Scientific Research Institute of Clinical and Experimental Lymphology of SB RAMS, Novosibirsk; State Research Center of Virology and Biotechnology "Vector”, Koltsovo; Novosibirsk scientific research institute of circulation pathology n.a. academician. E. N. Meshalkin, Novosibirsk

K. E Zubareva

Scientific Research Institute of Clinical and Experimental Lymphology of SB RAMS, Novosibirsk; State Research Center of Virology and Biotechnology "Vector”, Koltsovo

A. F Poveschenko

Scientific Research Institute of Clinical and Experimental Lymphology of SB RAMS, Novosibirsk; Novosibirsk scientific research institute of circulation pathology n.a. academician. E. N. Meshalkin, Novosibirsk

E. A Nechaeva

State Research Center of Virology and Biotechnology "Vector”, Koltsovo

V. I Konenkova

Scientific Research Institute of Clinical and Experimental Lymphology of SB RAMS, Novosibirsk; Novosibirsk scientific research institute of circulation pathology n.a. academician. E. N. Meshalkin, Novosibirsk

References

  1. Takehara N. Cell therapy for cardiovascular regeneration. Ann. Vasc. Dis. 2013; 6(2): 137-44.
  2. Drela K., Siedlecka P., Sarnowska A. et al. Human mesenchymal stem cells in the treatment of neurological diseases. Acta. Neurobiol. Exp. (Wars). 2013; 73(1): 38-56.
  3. Dominguez-Bendala J., Lanzoni G., Inverardi L. et al. Concise review: mesenchymal stem cells for diabetes. Stem Cells Transl. Med. 2012; 1(1): 59-63.
  4. Michael M., Shimoni A., Nagler A. Recent compounds for immunosuppression and experimental therapies for acute graft-versus-hostdisease. Isr. Med. Assoc. J. 2013; 15(1): 44-50.
  5. Steinert A.F., Rackwitz L., Gilbert F. et al. Concise review: the clinical application of mesenchymal stem cells for musculoskeletalregeneration: current status and perspectives. Stem Cells Transl. Med. 2012; 1(3): 237-47.
  6. Frangioni J.V., Hajjar R.J. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 2004; 110(21): 3378-83.
  7. Schiffer M.S., Michael A.F. Renal cell turnover studied by Y chromosome (Y body) staining of the transplanted human kidney. J. Lab. Clin. Med. 1978; 92(6): 841-8.
  8. Hruban R.H., Long P.P., Perlman E.J. et al. Fluorescence in situ hybridization for the Y-chromosome can be used to detect cells of recipient origin in allografted hearts following cardiac transplantation. Am. J. Pathol. 1993; 142(4): 975-80.
  9. Соловьева А.О., Повещенко А.Ф., Шевченко А.В. и др. Изучение динамики миграциионной активности клеток костного мозга в условиях сингенной трансплантации in vivo у мышей СВА. Бюллетень ВСНЦ ЭЧ СО РАМН. 2011; 3(80): 221-5.
  10. Коненков В.И., Соловьева А.О., Повещенко А.Ф. и др. Исследование миграции клеток костного мозга в лимфоидные и нелимфоидные органы в условиях трансплантации in vitro сингенным реципиентам с использование генетических маркеров. Вестник лимфологии 2011; 2: 7-13.
  11. Lin W.R., Inatomi O., Lee C.Y. et al. Bone marrow-derived cells contribute to cerulein-induced pancreatic fibrosis in the mouse. Int. J. Exp. Path. 2012; 93: 130-8.
  12. Garrovo C., Bergamin N., Bates D. et al. In vivo tracking of murine adipose tissue-derived multipotent adult stem cells and ex vivo cross-validation. Int. J. Mol. Imaging. 2013; 2013: 1-13.
  13. De Clerck L.S., Bridts C.H., Mertens A.M. et al. Use of fluorescent dyes in the determination of adherence of human leucocytes to endothelial cells and the effect of fluorochromes on cellular function. J. Immunol. Meth. 1994; 172: 115-24.
  14. Hendrikx P.J., Martens C.M., Hagenbeek A. et al. Homing of fluorescently labeled murine hematopoietic stem cells. Exp. Hematol. 1996; 24: 129-40.
  15. Donega V., van Velthoven C.T., Nijboer C.H. et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotorimprovement. PLoS One 2013; 8(1): 1-7.
  16. Dai W., Hale S.L., Martin B.J. et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium short- and long-term effects. Circulation 2005; 112: 214-23.
  17. Weston S.A., Parish C.R. New fluorescent dyes for lymphocyte migration studies: Analysis by flow cytometry and fluorescence microscopy. J. Immunol. Meth. 1990; 133: 87-97.
  18. Chang Q., Yan L., Wang C.Z. et al. In vivo transplantation of bone marrow mesenchymal stem cells accelerates repair of injured gastric mucosa in rats. Chin. Med. J. [Engl). 2012; 125(6): 1169-74.
  19. Sato M., Uchida K., Nakajima H. et al. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res. Ther. 2012; 14(1): 4-9.
  20. Ragnarson B., Bengtsson L., Haegerstrand A. Labeling with fluorescent carbocyanine dyes of cultured endothelial and smooth muscle cells by growth in dye-containing medium. Histochemistry 1992; 97: 329-33.
  21. Leiker M., Suzuki G., Vijay S. et al. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant. 2008; 17(8): 911-22.
  22. Ludowyk P.A., Willenborg D.O., Parish C.R. Selective localisation of neuro-specific T lymphocytes in the central nervous system. J. Neuroimmunol. 1992; 37: 237-50.
  23. Kruse C.A., Kong Q., Schiltz P.M. et al. Migration of activated lymphocytes when adoptively transferred into cannulated rat brain. J. Neuroimmunol. 1994; 55: 11-21.
  24. Alberti-Amador E., Garcia-Miniet R., Serrano-Sanchez T. et al. Evaluation of the survival of bone marrow mononucleate cells transplanted in a rat model of striatal lesion with quinolinic acid. Rev. Neurol. 2005; 40(9): 518-22.
  25. Goodell M.A., Brose K., Paradis G. et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 1996; 183: 1797-806.
  26. Rossi L., Challen G.A., Sirin O. et al. Hematopoietic stem cell characterization and isolation. Meth. Mol. Biol. 2011; 750: 47-59.
  27. Cho E.C., Glaus C., Chen J. et al. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med. 2010; 16: 561-73.
  28. Michalet X., Pinaud F.F., Bentolila L.A. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307: 538-44.
  29. Laurent S., Forge D., Port M. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008; 108: 2064-110.
  30. Na H.B., Song I.C., Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009; 21: 2133-48.
  31. Xu C. Nanoparticle-based monitoring of cell therapy. Nanotechnology 2011; 9; 22(49): 1-31.
  32. Sutton E.J., Henning T.D., Pichler B.J. et al. Cell tracking with optical imaging. Eur. Radiol. 2008; 18: 2021-32.
  33. Lei Y., Tang H., Yao L. et al. Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug. Chem. 2008; 19: 421-7.
  34. Li L., Jiang W., Luo K. et al. Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics. 2013; 3(8): 595-615.
  35. Buxton R.B. Introduction to functional magnetic resonance imaging: principles and techniques. 2nd ed. New York: Cambridge University Press; 2009.
  36. Bulte J.W. In vivo MRI cell tracking: clinical studies. Am. J. Roentgenol. 2009; 193: 314-25.
  37. Weaner L.E., Hoerr D.C. Synthesis and application of radioisotopes in pharmaceutical research and development. In: Abdel-Magid A.F., Caron S., editors. Fundamentals of early clinical drug development: from synthesis Design to formulation. New York: Wiley; 2006. p. 189-214.
  38. Lewellen T.K. Recent developments in PET detector technology. Phys. Med. Biol. 2008; 53: 287-317.
  39. Massoud T.F., Gambhir S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Develop. 2003; 17: 545-80.
  40. Welling M.M., Duijvestein M., Signore A. et al. In vivo biodistribution of stem cells using molecular nuclear medicine imaging. J. Cell Physiol. 2011; 226: 1444-52.
  41. Chen I.Y., Wu J.C. Cardiovascular molecular imaging: focus on clinical translation. Circulation 2011; 123: 425-43.
  42. Rossin R., Muro S., Welch M.J. et al. In vivo imaging of Cu-64-labeled polymer nanoparticles targeted to the lung endothelium. J. Nucl. Med. 2008; 49: 103-11.
  43. Cai W.B., Chen K., Li Z.B. et al. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 2007; 48: 1862-70.
  44. Patel D., Kell A., Simard B. et al. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials 2011; 32: 1167-76.
  45. Stelter L., Pinkernelle J.G., Michel R. et al. Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3 T MRI, small animal PET, and fluorescence imaging. Mol. Imag. Biol. 2009; 12: 25-34.
  46. Lee A.S., Wu J.C. Imaging of embryonic stem cell migration in vivo. Meth. Mol. Biol. 2011; 750: 101-14.
  47. Yaghoubi S.S., Barrio J.R., Namavari M. et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther. 2005; 12: 329-39.
  48. Acton P.D., Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q. J. Nucl. Med. Mol. Imaging. 2005; 49 (4): 349-60.
  49. Wilson T., Hastings J.W. Bioluminescence. Annu. Rev. Cell Dev. Biol. 1998; 14: 197-230.
  50. Wu J.C., Sundaresan G., Iyer M. et al. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol. Ther. 2001; 4: 297-306.
  51. Contag P.R., Olomu I.N., Stevenson D.K. et al. Bioluminescent indicators in living mammals. Nat. Med. 1998; 4: 245-7.
  52. Verkhusha V.V., Otsuna H., Awasaki T. et al. An enhanced mutant of red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle formation. J. Biol. Chem. 2001; 276: 29621-4.
  53. Rice B.W., Cable M.D., Nelson M.B. In vivo imaging of light-emitting probes. J. Biomed. Opt. 2001; 6: 432-40.
  54. Kraitchman D.L., Bulte J.W. In vivo imaging of stem cells and beta cells using direct cell labeling and reporter gene methods. Arterioscler. Thromb. Vasc. Biol. 2009; 29: 1025-30.
  55. Brenan M., Parish C.R. Intracellular fluorescent labelling of cells for analysis of lymphocyte migration. J. Immunol. Meth. 1984; 74: 31-8.
  56. Bradbury M.G., Qiu M.R., Parish C.R. The immunomodulatory compound 2-acetyl-4-tetrahydroxybutyl imidazole causes sequestration of lymphocytes in non-lymphoid organs. Immunol. Cell Biol. 1997; 75: 497-502.
  57. Fulcher D.A., Lyons A.B., Korn S.L. et al. The fate of selfreactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J. Exp. Med. 1996; 183: 2313-28.
  58. Lyons A.B., Parish C.R. Are murine marginal zone macrophages the splenic white pulp analogue of high endothelial venules?. Eur. J. Immunol. 1995; 25: 3165-72.
  59. Lyons A.B. Pertussis toxin pretreatment alters the in vivo cell division behaviour and survival of B lymphocytes after intravenous transfer. Immunol. Cell Biol. 1997; 75: 7-12.
  60. Butcher E.C., Weissman I.L. Direct fluorescent labelling of cells with fluorescein or rhodamine isothiocyanate. I. Technical aspects. J. Immunol. Meth. 1980; 37: 97-108.
  61. Dittel B.N., Visintin I., Merchant R.M. et al. Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J. Immunol. 1999; 163: 32-9.
  62. Hendrikx P.J., Martens C.M., Hagenbeek A. et al. Homing of fluorescently labeled murine hematopoietic stem cells. Exp. Hematol. 1996; 24: 129-40.
  63. Beavis A.J., Pennline K.J. Tracking of murine spleen cells in vivo: Detection of PKH26-labeled cells in the pancreas of non-obese diabetic (NOD) mice. J. Immunol. Meth. 1994; 170: 57-65.
  64. Young A.J., Hay J.B. Rapid turnover of the recirculating lymphocyte pool in vivo. Int. Immunol. 1995; 7: 1607-15.
  65. Niers J.N. A single reporter for targeted multimodal in vivo imaging. J. Am. Chem. Soc. 2012; 134(11): 5149-56.
  66. Wolf.D. Re: Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Nat. Cancer Inst. 2005; 97(7): 540-41.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies