Application of cell and tissue cultures for potential anti-cancer/oncology drugs screening in vitro

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Ne of the reasons for the failure of potential anticancer drugs in clinical trials is the imperfection of existing preclinical screening systems. Perhaps the most important step is in vitro testing during which several substances with certain properties should be selected from a large number of substances. An effective system of screening should closely resemble the organization of naturally occurring tumors. Cell cultures are the most simple from technical point of view in vitro models of tumors. However, in many respects cell cultures different from natural tumors. Several models which are more accurately (compared to simple monolayer cultures) emulate the tumor and its microenvironment are developed. An example is three-dimensional cultures. Furthermore, additional methods of anticancer drugs testing are developed based on tissue slice cultures. This review describes current in vitro models which can be used to test the activity of potential drugs for use in treating of oncological diseases.

Full Text

Restricted Access

About the authors

R. N Mingaleeva

Kazan Federal University, Kazan, Russia

V. V Solovieva

Kazan Federal University, Kazan, Russia

N. L Blatt

Kazan Federal University, Kazan, Russia

A. A Rizvanov

Kazan Federal University, Kazan, Russia

References

  1. Damia G., D'Incalci M. Contemporary pre-clinical development of anticancer agents-what are the optimal preclinical models? Eur. J. Cancer. 2009; 45(16): 2768-81.
  2. Sverdlov E. Not gene therapy, but genetic surgery — the right strategy to attack cancer. Mol. Gen. Microbiol. Virol. 2009; 24(3): 93—113.
  3. Nguyen D.X., Bos P.D., Massague J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer. 2009; 9(4): 274—84.
  4. Wu Y., Zhou B.P. New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin (Shanghai). 2008; 40(7): 643—50.
  5. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell 2000; 100(1): 57—70.
  6. Felsher D.W. Tumor dormancy and oncogene addiction. Apmis 2008; 116(7-8): 629—37.
  7. Cheng T.L., Teng C.F., Tsai W.H. et al. Multitarget therapy of malignant cancers by the head-to-tail tandem array multiple shRNAs expression system. Cancer Gene Ther. 2009; 16(6): 516—31.
  8. Seth P. Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther. 2005; 4(5): 512—7.
  9. Xue W., Zender L., Miething C. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445(7128): 656—60.
  10. Wagner E. Advances in cancer gene therapy: tumor-targeted delivery of therapeutic pDNA, siRNA, and dsRNA nucleic acids. J Buon. 2007; 12(Suppl 1): S77—82.
  11. Shoemaker R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer. 2006; 6(10): 813—23.
  12. Paull K.D., Shoemaker R.H., Hodes L. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl. Cancer Inst. 1989; 81(14): 1088—92.
  13. Skehan P., Storeng R., Scudiero D. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl. Cancer Inst. 1990; 82(13): 1107—12.
  14. Adams J. Development of the proteasome inhibitor PS-341. Oncologist 2002; 7(1): 9—16.
  15. Adams J., Palombella V.J., Sausville E.A. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999; 59(11): 2615—22.
  16. Johnson J.I., Decker S., Zaharevitz D. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J Cancer. 2001; 84(10): 1424—31.
  17. Peterson J.K., Houghton P.J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J Cancer. 2004; 40(6): 837—44.
  18. Elliott N.T., Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J. Pharm. Sci. 2010; 100(1): 59—74.
  19. Rizvanov A.A., Yalvac M.E., Shafigullina A.K. et al. Interaction and self-organization of human mesenchymal stem cells and neuroblastoma SH-SY5Y cells under co-culture conditions: A novel system for modeling cancer cell micro-environment. Eur. J Pharm. Biopharm. 2010; 76(2): 253—9.
  20. Kaplan R.N., Riba R.D., Zacharoulis S. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438(7069): 820—7.
  21. Evenson A., Mowschenson P., Wang H. et al. Hyalinizing trabecular adenoma — an uncommon thyroid tumor frequently misdiagnosed as papillary or medullary thyroid carcinoma. Am. J Surg. 2007; 193(6): 707—12.
  22. Padron J.M., van der Wilt C.L., Smid K. et al. The multilayered postconfluent cell culture as a model for drug screening. Crit. Rev. Oncol. Hematol. 2000; 36(2-3): 141—57.
  23. Ito K., Hirao A., Arai F. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431(7011): 997—1002.
  24. Smith J., Ladi E., Mayer-Proschel M., Noble M. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. PNAS USA 2000; 97(18): 10032—7.
  25. Diehn M., Cho R.W., Lobo N.A. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458(7239): 780—3.
  26. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 1962; 115: 453—66.
  27. Brown N.,Bicknell R. Cell migration and the boyden chamber. Meth. Mol. Med. 2001; 58: 47—54.
  28. Chen H. Cell migration: developmental methods and protocols. Meth. Mol. Biol. 2005; New Jersey: Springer. p. 15—22.
  29. Li Y.H., Zhu C. A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clin. Exp. Metastasis. 1999; 17(5): 423—9.
  30. Wang D., Tang F., Wang S. et al. Preclinical anti-angiogenesis and anti-tumor activity of SIM010603, an oral, multi-targets receptor tyrosine kinases inhibitor. Cancer Chemother. Pharmacol. 2012; 69(1): 173—83.
  31. Chen K.T., Hour M.J., Tsai S.C. et al. The novel synthesized 6-fluoro-(3-fluorophenyl)-4-(3-methoxyanilino)quinazoline (LJJ-10) compound exhibits anti-metastatic effects in human osteosarcoma U-2 OS cells through targeting insulin-like growth factor-I receptor. Int. J. Oncol. 2011; 39(3): 611—9.
  32. Cheng D.D., Yang Q.C., Zhang Z.C. et al. Antitumor activity of histone deacetylase inhibitor trichostatin A in osteosarcoma cells. Asian Pac. J. Cancer Prev. 2012; 13(4): 1395—9.
  33. Hulkower K., Herber R. Cell Migration and invasion assays as tools for drug discovery. Pharmaceutics 2011; 3: 107—24.
  34. Comley J. 3D cell culture: easier said than done! Drug Discovery World 2010; summer: 25—41.
  35. Takagi A., Watanabe M., Ishii Y. et al. Three-dimensional cellular spheroid formation provides human prostate tumor cells with tissue-like features. Anticancer Res. 2007; 27(1A): 45—53.
  36. Hedlund T.E., Duke R.C., Miller G.J. Three-dimensional spheroid cultures of human prostate cancer cell lines. Prostate 1999; 41(3): 154—65.
  37. Mayer B., Klement G., Kaneko M. et al. Multicellular gastric cancer spheroids recapitulate growth pattern and differentiation phenotype of human gastric carcinomas. Gastroenterology 2001; 121(4): 839—52.
  38. Feder-Mengus C., Ghosh S., Reschner A. et al. New dimensions in tumor immunology: what does 3D culture reveal? Trends Mol. Med. 2008; 14(8): 333—40.
  39. Lin R.Z., Chang H.Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008; 3(9-10): 1172—84.
  40. Saburina I., Repin V. 3D-culturing: from individual cells to blastemic tissue [Revisited the phenomenon of epithelial-mesenchymal plasticity]. Cell transplantology and tissue engineering 2010; 5(2): 75—86.
  41. Nederman T., Norling B., Glimelius B. et al. Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res. 1984; 44(7): 3090—7.
  42. Russell P., Jackson P., Kingsley E. Prostate cancer methods and protocols. Randwick Humana Press. 2003; 71—81.
  43. Kunz-Schughart L.A., Freyer J.P., Hofstaedter F., Ebner R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen. 2004; 9(4): 273—85.
  44. Gurski L., Petrelli N., Jia X., Farach-Carson M. 3D Matrices for anti-cancer drug testing and development. Oncology Issues 2010; 25: 20—5.
  45. Marusic M., Bajzer Z., Freyer J.P. et al. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif. 1994; 27(2): 73—94.
  46. Kim J.B., Stein R., O'Hare M.J. Three-dimensional in vitro tissue culture models of breast cancer — a review. Breast Cancer Res. Treat. 2004; 85(3): 281—91.
  47. Tung Y.C., Hsiao A.Y., Allen S.G. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 2011; 136(3): 473—8.
  48. Hsiao A.Y., 3D spheroid culture systems for metastatic prostate cancer dormancy studies and anti-cancer therapeutics development, in The University of Michigan. 2011, The University of Michigan: Ann Arbor. p. 171.
  49. Pampaloni F., Stelzer E. Three-dimensional cell cultures in toxicology. Biotechnol. Genet. Eng. Rev. 2010; 26: 117—38.
  50. Hlatky L., Alpen E.L. Two-dimensional diffusion limited system for cell growth. Cell Tissue Kinet. 1985; 18(6): 597—611.
  51. Li L., Lu Y. Optimizing a 3D culture system to study the interaction between epithelial breast cancer and its surrounding fibroblasts. Cancer 2011; 2: 458—66.
  52. Olumi A.F., Dazin P., Tlsty T.D. A novel coculture technique demonstrates that normal human prostatic fibroblasts contribute to tumor formation of LNCaP cells by retarding cell death. Cancer Res. 1998; 58(20): 4525—30.
  53. Vaira V., Fedele G., Pyne S. et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. PNAS USA 2010; 107(18): 8352—6.
  54. Jarvelainen H., Sainio A., Koulu M. et al. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009; 61(2): 198—223.
  55. Tibbitt M.W., Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009; 103(4): 655-63.
  56. Prestwich G.D., Liu Y., Yu B. et al. 3-D culture in synthetic extracellular matrices: new tissue models for drug toxicology and cancer drug discovery. Adv. Enzyme Regul. 2007; 47: 196-207.
  57. Shu X.Z., Ahmad S., Liu Y. et al. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J. Biomed. Mater Res. A. 2006; 79(4): 902-12.
  58. Jabbari E. Biologically-responsive hybrid biomaterials: a reference for material scientists and bioengineers, A. Khademhosseini editor. Culumbia, South Carolina: World Scientific Publishing Co. 2010; 323-7.
  59. Huang C.P., Lu J., Seon H. et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip. 2009; 9(12): 1740-8.
  60. Cowan D.S., Hicks K.O., Wilson W.R. Multicellular membranes as an in vitro model for extravascular diffusion in tumours. Br. J Cancer Suppl. 1996; 27: 28-31.
  61. Brown J.M., Siim B.G. Hypoxia-specific cytotoxins in cancer therapy. Semin. Radiat. Oncol. 1996; 6(1): 22-36.
  62. Brown J.M., Giaccia A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998; 58(7): 1408-16.
  63. Durand R.E., Olive P.L. Evaluation of bioreductive drugs in multicell spheroids. Int. J. Radiat. Oncol. Biol. Phys. 1992; 22(4): 689-92.
  64. Hicks K.O., Fleming Y., Siim B.G. et al. Extravascular diffusion of tirapazamine: effect of metabolic consumption assessed using the multicellular layer model. Int. J. Radiat. Oncol. Biol. Phys. 1998; 42(3): 641-9.
  65. Schichor C., Kerkau S., Visted T. et al. The brain slice chamber, a novel variation of the Boyden chamber assay, allows time-dependent quantification of glioma invasion into mammalian brain in vitro. J. Neurooncol. 2005; 73(1): 9-18.
  66. Valster A., Tran N.L., Nakada M. et al. Cell migration and invasion assays. Methods 2005; 37(2): 208-15.
  67. Oellers P., Schallenberg M., Stupp T. et al. A coculture assay to visualize and monitor interactions between migrating glioma cells and nerve fibers. Nat. Protoc. 2009; 4(6): 923-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies