Transfer of recombinant nucleic acids into cells (transfection) by means of histones and other nuclear proteins



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently a protein/peptide-mediated gene delivery has
been considered a promising approach in non-viral gene
transfer. The previous investigations have shown that histones
and other nuclear proteins might be effective vectors for gene
transfer into cells. Transfection of eukaryotic cells by nucleic
acid and histone complexes (histonefection) effectively occurs
with various histone proteins. The presence of DNA-binding
domains and specific signal sequences of nuclear location
allows to use histones (Н1/Н5, Н2А, Н2В, Н3, Н4) and other
nuclear proteins (such as HMG family proteins and histonelike
prokaryotic proteins) for recombinant genes transfer.
The positive charge of histone protein molecules enables
electrostatic interaction with negatively charged molecules
of nucleic acids and charge neutralization that facilitates
the complexes penetration through a negatively charged
cell membrane. Thus, histonefection is a promising method
for non-viral transfer of recombinant nucleic acids in gene
therapy.

About the authors

V V Solovieva

Kazan (Volga Region) Federal university, Kazan

Kazan (Volga Region) Federal university, Kazan

N V Kudryashova

Kazan (Volga Region) Federal university, Kazan

Kazan (Volga Region) Federal university, Kazan

A A Rizvanov

Kazan (Volga Region) Federal university, KazanKazan State Medical university, KazanRepublican Clinical Hospital of the Health Ministry of the Republic of Tatarstan, Kazan

Kazan (Volga Region) Federal university, KazanKazan State Medical university, KazanRepublican Clinical Hospital of the Health Ministry of the Republic of Tatarstan, Kazan

References

  1. Balicki D., Beutler E. Gene therapy of human disease. Medicine. 2002; 81[1]: 69-86.
  2. Kovesdi I., Brough D.E., Bruder J.T. et al. Adenoviral vectors for gene transfer. Curr. Opin. Biotechnol. 1997; 8[5]: 583-9.
  3. Felgner P.L., Barenholz Y., Behr J.P. et al. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 1997; 8[5]: 511-2.
  4. Mahato R.I., Smith L.C., Rolland A. Pharmaceutical perspectives of nonviral gene therapy. Adv. Genet. 1999; 41: 95-156.
  5. Balicki D., Reisfeld R.A., Pertl U. et al. Histone H2A-mediated transient cytokine gene delivery induces efficient antitumor responses in murine neuroblastoma. PNAS USA 2000; 97[21]: 11500-4.
  6. Schwartz B., Ivanov M.A., Pitard B. et al. Synthetic DNAcompacting peptides derived from human sequence enhance cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther. 1999; 6[2]: 282-92.
  7. Morris M.C., Vidal P., Chaloin L. et al. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic. Acids Res. 1997; 25[14]: 2730-6.
  8. Derossi D., Chassaing G., Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 1998; 8[2]: 84-7.
  9. Harbottle R.P., Cooper R.G., Hart S.L. et al. An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum. Gene Ther. 1998; 9[7]: 1037-47.
  10. Balicki D., E. Beutler. Histone H2A significantly enhances in vitro DNA transfection. Mol. Med. 1997; 3[11]: 782-7.
  11. Balicki D., Putnam C.D., Scaria P.V. et al. Structure and function correlation in histone H2A peptide-mediated gene transfer. PNAS USA 2002; 99[11]: 7467-71.
  12. Kornberg R.D., Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999; 98[3]: 285-94.
  13. Palau J., Climent F., Aviles F.J. et al. Interactions of histones and histone peptides with DNA Thermal denaturation and solubility studies. Biochim. Biophys. Acta. 1977; 476[2]: 108-21.
  14. Baake M., Doenecke D., Albig W. Characterisation of nuclear localisation signals of the four human core histones. J. Cell Biochem. 2001; 81[2]: 333-46
  15. Wiethoff C.M., Gill M.L., Koe G.S. et al. The structural organization of cationic lipid-DNA complexes. J. Biol. Chem. 2002; 277[47]: 44980-7.
  16. Ryser H.J., Hancock R. Histones and basic polyamino acids stimulate the uptake of albumin by tumor cells in culture. Science 1965; 150[3695]: 501-3.
  17. Ryser H.J. Uptake of protein by mammalian cells: an underdeveloped area. The penetration of foreign proteins into mammalian cells can be measured and their functions explored. Science 1968; 159[813]: 390-6.
  18. Ryser H.J. Studies on protein uptake by isolated tumor cells. 3. Apparent stimulations due to pH, hypertonicity, polycations, or dehydration and their relation to the enhanced penetration of infectious nucleic acids. J. Cell Biol. 1967; 32[3]: 737-50.
  19. Zaitsev S., Buchwalow I., Haberland A. et al. Histone H1- mediated transfection: role of calcium in the cellular uptake and intracellular fate of H1-DNA complexes. Acta Histochem. 2002; 104[1]: 85-92.
  20. Budker V., Hagstrom J.E., Lapina O. et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques 1997; 23[1]: 139, 142-7.
  21. Fritz J.D., Herweijer H., Zhang G. et al. Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum. Gene Ther. 1996; 7[12]: 1395-404.
  22. Haberland A., Dalluge R., Zaitsev S. et al. Ligand-histone H1 conjugates: increased solubility of DNA complexes, but no enhanced transfection activity. Somat. Cell Mol. Genet. 1999; 25[4]: 237-45.
  23. Haberland A., Knaus T., Zaitsev S.V. et al. Histone H1-mediated transfection: serum inhibition can be overcome by Ca2+ ions. Pharm. Res. 2000; 17[2]: 229-35.
  24. Hagstrom J.E., Sebestyen M.G., Budker V. et al. Complexes of non-cationic liposomes and histone H1 mediate efficient transfection of DNA without encapsulation. Biochim. Biophys. Acta. 1996; 1284[1]: 47-55.
  25. Kott M., Haberland A., Zaitsev S. et al. A new efficient method for transfection of neonatal cardiomyocytes using histone H1 in combination with DOSPER liposomal transfection reagent. Somat. Cell Mol. Genet. 1998; 24[4]: 257-61.
  26. Lucius H., Haberland A., Zaitsev S. et al. Structure of transfection-active histone H1/DNA complexes. Mol. Biol. Rep. 2001; 28[3]: 157-65.
  27. Zaitsev S.V., Haberland A., Otto A. et al. H1 and HMG17 extracted from calf thymus nuclei are efficient DNA carriers in gene transfer. Gene Ther. 1997; 4[6]: 586-92.
  28. Demirhan I., Hasselmayer O., Chandra A. et al., Histonemediated transfer and expression of the HIV-1 tat gene in Jurkat cells. J. Hum. Virol. 1998; 1[7]: 430-40.
  29. Bottger M., Zaitsev S.V., Otto A. et al. Acid nuclear extracts as mediators of gene transfer and expression. Biochim. Biophys. Acta. 1998; 1395[1]: 78-87.
  30. Haberland A., Knaus T., Zaitsev S.V. et al. Calcium ions as efficient cofactor of polycation-mediated gene transfer. Biochim. Biophys. Acta. 1999; 1445[1]: 21-30.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies