Intramiocardial administration of resident c-kit+ cardiac progenital cells activates epicardial progenitor cells and promotes myocardial vascularation after the infarction

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Resident cardiac progenitor cells reside in the adult heart and govern myocardial homeostasis and repair after injury. Many experimental and clinical studies are being completed with encouraging results. However, the mechanisms of the therapeutic action of CPC remain poorly understood. Initially they were explained by the ability of CPC to differentiate into cardiomyocytes and vascular cells, recently their regenerative effects are mainly explained by secretion biologically active molecules and the release of exosomes, which promote activation of the regenerative program in the heart cells. The aim of the present study is to assess the effect of intramyocardial CPC transplantation on the activation of the vasculogenic pool of epicardial cells. In our study we ligated the anterior descending coronary artery in the hearts of male Wistar rats and intramyocardial injections of a fluorescently labeled (CM-DIL+) CPC or control medium were performed. Fourteen days after transplantation, CPC retained viability, proliferation properties and some cells showed signs of vasculogenic differentiation. We did not find significant differences in the infarct size between two groups assessed by morphometric studies. However, CPC transplantation attenuated adverse remodeling: we found reduction in left ventricular dilatation, severity of transmural injury and activation of arteriogenesis in the border zone. By immunofluorescence staining of myocardial sections, obtained after CPC transplantation, we found a significant increase the number of Wt1+ cells in the epicardium, indicating activation of the epithelial-mesenchymal transition and the formation of epicardial progenitor cells (EPC). EPC migrated to the myocardium, some of them coexpressed markers CD31 (Pecam), alpha-smooth muscle actin (a-SMA), and participated in the new vessels formation. Thus, intramyocardial CPC transplantation increased the vascularization of the myocardium by differentiation of the transplanted cells, as well as the activation of vasculogenic epicardial cells, which can contribute the reduction of negative cardiac remodeling.

Full Text

Restricted Access

About the authors

K. V Dergilev

Russian Cardiology Research and Production Complex

Email: doctorkote@gmail.com

Z. I Tsokolaeva

Russian Cardiology Research and Production Complex

I. B Beloglazova

Russian Cardiology Research and Production Complex; M.V. Lomonosov Moscow State University

E. S Zubkova

Russian Cardiology Research and Production Complex; M.V. Lomonosov Moscow State University

M. A Boldyreva

Russian Cardiology Research and Production Complex; M.V. Lomonosov Moscow State University

E. I Ratner

Russian Cardiology Research and Production Complex

D. T Diykanov

M.V. Lomonosov Moscow State University

M. U Menshikov

Russian Cardiology Research and Production Complex

E. V Parfenova

Russian Cardiology Research and Production Complex; M.V. Lomonosov Moscow State University

References

  1. Cochain C., Channon K.M., Silvestre J.S. Angiogenesis in the infarcted myocardium. Antioxid. Redox Signal. 2013; 18(9): 1100-13.
  2. Shah A.M., Mann D.L. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 2011; 378(9792): 704-12.
  3. Battegay E.J. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J. Mol. Med. 1995; 73(7): 333-46.
  4. Meoli D.F., Sadeghi M.M., Krassilnikova S. et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J. Clin. Invest. 2004; 113(12): 1684-91.
  5. Uchida Y., Yanagisawa-Miwa A., Nakamura F. et al. Angiogenic therapy of acute myocardial infarction by intrapericardial injection of basic fibroblast growth factor and heparin sulfate: an experimental study. Am. Heart J. 1995; 130(6): 1182-8.
  6. Gyöngyösi M., Wojakowski W., Lemarchand P. et al. Meta-analysis of cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ. Res. 2015; 116(8): 1346-60.
  7. Scimia M.C., Gumpert A.M., Koch W.J. Cardiovascular gene therapy for myocardial infarction. Expert Opin. Biol. Ther. 2014; 14(2): 183-95.
  8. Bearzi C., Rota M., Hosoda T. et al. Human cardiac stem cells. PNAS USA 2007; 104(35): 14068-73.
  9. Bolli R., Chugh A.R., D'Amario D. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011; 378(9806): 1847-57.
  10. Fazel S., Cimini M., Chen L. et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest. 2006; 116(7): 1865-77.
  11. Kajstura J., Urbanek K., Perl S. et al. Cardiomyogenesis in the adult human heart. Circ. Res. 2010; 107(2): 305-15.
  12. Dergilev K.V., Makarevich P.I., Tsokolaeva Z.I. et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermo-responsive dishes reveals similar properties of constructs. Tissue Cell 2017; 49(1): 64-71.
  13. Traktuev D.O., Tsokolaeva Z.I., Shevelev A.A. et al. Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle. Mol. Ther. 2007; 15(11): 1939-46.
  14. Hochman J.S., Choo H. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 1987; 75(1): 299-306.
  15. Asahara T., Murohara T., Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275(5302): 964-7.
  16. Lin C.S., Lue T.F. Defining vascular stem cells. Stem Cells Dev. 2013; 22(7): 1018-26.
  17. Meizlish J.L., Berger H.J., Plankey M. et al.Functional left ventricular aneurysm formation after acute anterior transmural myocardial infarction. Incidence, natural history, and prognostic implications. N. Engl. J. Med. 1984; 311(16): 1001-6.
  18. Xiao Y., Ding L., Chen H. et al. Grain-Moxibustion may Protect Myocardium by Reducing Oxidative Stress in Doxorubicin-induced Cardiomyopathy Rats. Zhen Ci Yan Jiu. 2016; 41(6): 502-8.
  19. Paul A., Mitra A., Kohli V. et al. Anaesthetic challenges for device closure of post-infarct ventricular septal defect with coronary angioplasty. Ann. Card. Anaesth. 2003; 6(1): 52-5.
  20. Duim S.N., Smits A.M., Kruithof B.P. et al. The roadmap of WT1 protein expression in the human fetal heart. J. Mol. Cell. Cardiol. 2016; 90: 139-45.
  21. Duim S.N., Kurakula K., Goumans M.J. et al. Cardiac endothelial cells express Wilms' tumor-1: Wt1 expression in the developing, adult and infarcted heart. J. Mol. Cell. Cardiol. 2015; 81: 127-35.
  22. Xiang F.L., Liu Y., Lu X. et al. Cardiac-specific overexpression of human stem cell factor promotes epicardial activation and arteriogenesis after myocardial infarction. Circ. Heart Fail. 2014; 7(5): 831-42.
  23. Carmeliet P., Jain R.K. Angiogenesis in health and disease. Nat. Med. 2003; 9: 653-60.
  24. He L., Huang X., Kanisicak O. et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J. Clin. Invest. 2017; 127(8): 2968-81.
  25. Gômez-Gaviro M.V., Lovell-Badge R., Fernandez-Avilés F. et al. The vascular stem cell niche. J. Cardiovasc. Transl. Res. 2012; 5(5): 618-30.
  26. Bearzi C., Leri A., Lo Monaco F. et al. Identifikation of a coronary vascular progenitor cell in the human heart. PNAS USA 2009; 106(37): 15885-90.
  27. Hamdi H., Furuta A., Bellamy V. et al. Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann. Thorac. Surg. 2009; 87(4): 1196-203.
  28. Bogers A.J., Gittenberger-de Groot A.C., Poelmann R.E. et al. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat. Embryol. (Berl.) 1989; 180(5): 437-41.
  29. Reese D.E., Mikawa T., Bader D.M. Development of the coronary vessel system. Circ. Res. 2002; 91(9): 761-8.
  30. Van den Akker N.M., Winkel L.C., Nisancioglu M.H. et al. PDGF-B signaling is important for murine cardiac development: its role in developing atrioventricular valves, coronaries, and cardiac innervation. Dev. Dyn. 2008; 237(2): 494-503.
  31. Tang Y., Wu X., Lei W. et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 2009; 15(7): 757-65.
  32. Chimenti I., Smith R.R., Li T.S. et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res. 2010; 106: 971-80.
  33. Tomanek R.J., Ratajska A., Kitten G.T. et al. Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev. Dyn. 1999; 215(1): 54-61.
  34. Folkman J., D'Amore P.A. Blood vessel formation: what is its molecular basis? Cell 1996; 87(7): 1153-5.
  35. Kaminski W.E., Lindahl P., Lin N.L. et al. Basis of hematopoietic defects in platelet-derived growth factor (PDGF)-B and PDGF beta-receptor null mice. Blood 2001; 97(7): 1990-8.
  36. Austin A.F., Compton L.A., Love J.D. et al. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Dev. Dyn. 2008; 237(2): 366-76.
  37. Eisenberg L.M., Markwald R.R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ. Res. 1995; 77(1): 1-6.
  38. Vrijsen K.R., Sluijter J.P., Schuchardt M.W. et al. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J. Cell. Mol. Med. 2010; 14: 1064-70.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies