The key stages of iPSCs differentiation into neuronal and glial cells

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Brain's neurodegenerative diseases are one of the most actual problems of neurology and neurobiology. The lack of the modern methods of treating this diseases stimulates to develop new effective approaches based on neuronal and glial cells, which requires studying the signaling mechanisms of neural differentiation. This review considers the key mechanisms and substances involved in the formation of the neuroepithelium in vivo, as well as for obtaining the neural stem cells from iPSCs and its further differentiation in various types of neuronal and glial cells in vitro.

Full Text

Restricted Access

About the authors

D. I Salikhova

Research Center for Medical Genetics; Research Institute of Human Morphology

Email: diana_salikhova@bk.ru

IA. Fedyunina

Research Center for Medical Genetics

T. B Bukharova

Research Center for Medical Genetics

D. V Goldshtein

Research Center for Medical Genetics

S. L Kiselev

Research Center for Medical Genetics; Vavilov Institute of General Genetics, Russian Academy of Sciences

References

  1. Ming Guo-li, Hongjun Song. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 2005; 28: 223-50.
  2. Коржевский Д.Э. Нейрогенез и нейральные стволовые клетки. Медицинский Академический Журнал 2010; 10(4): 175-82.
  3. Giurgea C.E. The nootropic concept and its prospective implications. Drug. Dev. Res. 1982; 2: 441-6.
  4. Лысогорская Е.В., Клюшников С.А. Точки приложения препаратов биологической природы в терапии нейродегенеративных заболеваний. Нервные болезни 2015; 2: 10-3.
  5. Дедов И.И., Тюльпаков А.Н., Чехонин В.П. и соавт. Персонализированная медицина: современное состояние и перспективы. Вестник Российской Академии Медицинских Наук 2012; 67(12): 4-12.
  6. LaBonne C., Bronner-Fraser M. Molecular mechanisms of neural crest formation. Annual Review of Cell and Developmental Biology 1999; 15(1): 81-112.
  7. Gaulden J., Reiter J.F. Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells. Human Molecular Genetics 2008; 17(1): 60-6.
  8. Greene N.D., Copp A.J. Development of the vertebrate central nervous system: formation of the neural tube. Prenatal Diagnosis: Published in Affiliation with the International Society for Prenatal Diagnosis 2009; 29(4): 303-11.
  9. Panchision D.M., McKay R.D. The control of neural stem cells by morphogenic signals. Current Opinion in Genetics & Development 2002; 12(4): 478-87.
  10. Stern C.D. Neural induction: 10 years on since the ‘default model’. Current Opinion in Cell Biology 2006; 18(6): 692-7.
  11. Лебедева О.С. Создание модельной системы для изучения функции генов, ассоциированных с болезнью Паркинсона, с использованием технологии генетического репрограммирования [диссертация]. Москва: ФГБУ «Институт общей генетики имени Н.И. Вавилова» РАН; 2016.
  12. Smith W.C., Harland R.M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 1992; 70(5): 829-40.
  13. Hemmati-Brivanlou A., Kelly O.G., Melton D.A. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 1994; 77(2): 283-95.
  14. Sasai Y., Lu B., Steinbeisser H. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 1994; 79(5): 779-90.
  15. Smith J.R., Vallier L., Lupo G. et al. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Developmental Biology 2008; 313(1): 107-17.
  16. Chambers S.M., Fasano C.A., Papapetrou E.P. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology 2009; 27(3): 275-80.
  17. Yu P.B., Hong C.C., Sachidanandan C. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nature Chemical Biology 2008; 4(1): 33-41.
  18. Zhou J., Su P., Li D. et al. High efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells 2010; 28(10): 1741-50.
  19. Molofsky A.V., Pardal R., Morrison S.J. Diverse mechanisms regulate stem cell self-renewal. Current Opinion in Cell Biology 2004; 16(6): 700-7.
  20. Chuang J.H., Tung L.C., Lin Y. Neural differentiation from embryonic stem cells in vitro: An overview of the signaling pathways. World Journal of Stem Cells 2015; 7(2): 437-47.
  21. Muzio L., Soria J.M., Pannese M. et al. A mutually stimulating loop involving emx2 and canonical wnt signalling specifically promotes expansion of occipital cortex and hippocampus. Cerebral Cortex 2005; 15(12): 2021-8.
  22. Wexler E.M., Paucer A., Kornblum H.I. et al. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 2009; 27(5): 1130-41.
  23. Davidson K.C., Jamshidi P., Daly R. et al. Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Molecular and Cellular Neuroscience 2007; 36(3): 408-15.
  24. Yoon K., Nery S., Rutlin M.L. et al. Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. Journal of Neuroscience 2004; 24(43): 9497-506.
  25. Zhang S.C., Wernig M., Duncan I.D. et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology 2001; 19(12): 1129-33.
  26. Alvarez-Buylla A., Garcia-Verdugo J.M., Tramontin A.D. et al. A unified hypothesis on the lineage of neural stem cells. Nature Reviews Neuroscience 2001; 2(4): 287-93.
  27. Gotz M., Huttner W.B. Developmental cell biology: The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology 2005; 6(10): 777-88.
  28. Hirabayashi Y., Itoh Y., Tabata H. et al. The Wnt/ß-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 2004; 131(12): 2791-801.
  29. Israsena N., Hu M., Fu W. et al. The presence of FGF2 signaling determines whether ß-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Developmental Biology 2004; 268(1): 220-31.
  30. Viti J., Gulacsi A., Lillien L. Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2. Journal of Neuroscience 2003; 23(13): 5919-27.
  31. Taylor S.M., Alvarez-Delfin K., Saade C.J. et al. The bHLH transcription factor NeuroD governs photoreceptor genesis and regeneration through deltanotch signaling. Investigative Ophthalmology & Visual Science 2015; 56(12): 7496-515.
  32. Zhao J. The transcriptional regulation by neurogenin1 in neurogenesis. University of California, Los Angeles: ProQuest; 2009.
  33. Ballas N., Grunseich C., Lu D.D. et al. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 2005; 121(4): 645-57.
  34. Louvi A., Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nature Reviews Neuroscience 2006; 7(2): 93-102.
  35. Abranches E., Silva M., Pradier L. et al. Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. PloS One 2009; 4(7): 6286.
  36. Emdad L., D'Souza S.L., Kothari H.P. et al. Efficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes. Stem Cells and Development 2011; 21(3): 404-10.
  37. Krencik R., Zhang S.C. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nature Protocols 2011; 6(11): 1710-7.
  38. Czepiel M., Balasubramaniyan V., Schaafsma W. et al. Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia 2011; 59(6): 882-92.
  39. Fukuda S., Abematsu M., Mori H. et al. Potentiation of astrogliogenesis by STAT3-mediated activation of bone morphogenetic protein-Smad signaling in neural stem cells. Molecular and Cellular Biology 2007; 27(13): 4931-7.
  40. Bonaguidi M.A., McGuire T., Hu M. et al. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 2005; 132(24): 5503-14.
  41. Гомазков О.А. Ростовые и нейротрофические факторы в регуляции трансформации стволовых клеток и нейрогенеза. Нейрохимия 2007; 24(2): 101-20.
  42. Roussa E., Krieglstein K. Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-ß. Cell and Tissue Research 2004; 318(1): 23-33.
  43. Kriks S., Shim J.W., Piao J. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 2011; 480(7378): 547-51.
  44. Лебедева O.C., Лагарькова М.А., Киселев С.Л. и соавт. Морфофункциональные свойства индуцированных плюрипотентных стволовых клеток, полученных из фибробластов кожи человека и дифференцированных в дофаминергические нейроны. Нейрохимия 2013; 30(3): 233-41.
  45. Cai J., Yang M., Poremsky E. et al. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells and Development 2009; 19(7): 1017-23.
  46. Гомазков О.А. Сигнальные молекулы как регуляторы нейрогенеза взрослого мозга. Нейрохимия 2013; 30(4): 273.
  47. Кузнецов С.Л., Мушкамбаров Н.Н. Гистология, цитология и эмбриология. Москва: Медицинское информационное агентство (МИА); 2005.
  48. Liu Y., Liu H., Sauvey C. et al. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nature Protocols 2013; 8(9): 1670-9.
  49. Ma L., Hu B., Liu Y. et al. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 2012; 10(4): 455-64.
  50. Alenina N., Bashammakh S., Bader M. Specification and differentiation of serotonergic neurons. Stem Cell Reviews 2006; 2(1): 5-10.
  51. Tokumoto Y., Ogawa S., Nagamune T. et al. Comparison of efficiency of terminal differentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro. Journal of Bioscience and Bioengineering 2010; 109(6): 622-8.
  52. Stacpoole S.R., Spitzer S., Bilican B. et al. High yields of oligodendrocyte lineage cells from human embryonic stem cells at physiological oxygen tensions for evaluation of translational biology. Stem Cell Reports 2013; 1(5): 437-50.
  53. Hughes S.M., Lillien L.E., Raff M.C. et al. Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature 1988; 335(6185): 70-3.
  54. Song M.R., Ghosh A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nature Neuroscience 2004; 7(3): 229-35.
  55. Emdad L., D'Souza S.L., Kothari H.P. et al. Efficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes. Stem Cells and Development 2011; 21(3): 404-10.
  56. Nakashima K., Yanagisawa M., Arakawa H. et al. Astrocyte differentiation mediated by LIF in cooperation with BMP2. FEBS Letters 1999; 457(1): 43-6.
  57. Liu Y., Rao M.S. Glial progenitors in the CNS and possible lineage relationships among them. Biology of the Cell 2004; 96(4): 279-90.
  58. Kessaris N., Pringle N., Richardson W.D. Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philosophical Transactions of the Royal Society of London B: Biological Sciences 2008; 363(1489): 71-85.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies